

 1

SMS USERS GUIDE

Tom Henderson

Dan Schaffer

Mark Govett

Leslie Hart

Advanced Computing Branch
Aviation Division

NOAA/Forecast Systems Laboratory
325 Broadway

Boulder, Colorado 80303

May 2000
SMS Software Version: 2.1

http://www-ad.fsl.noaa.gov/ac/sms.html.

 2

1 INTRODUCTION..5

1.1 ORGANIZATION OF THIS DOCUMENT ...5
1.2 TERMS AND CONVENTIONS ...6

2 GETTING STARTED ...7

2.1 BASIC PARALLELIZATION STEPS ...7
2.2 A VERY SIMPLE PROGRAM...7
2.3 SIMPLE COMPUTATION ON A REGULAR GRID..9

2.3.1 Parallelization by Domain Decomposition..10
2.3.2 Parallel Printing ..17
2.3.3 Reduction ...17

2.4 BOUNDARY INITIALIZATION..19
2.5 A SIMPLE FDA PROGRAM..25
2.6 WRITING OUTPUT TO DISK ...33
2.7 USING MULTIPLE DECOMPOSITIONS ...33

3 DECOMPOSING ARRAYS AND PARALLELIZING LOOPS36

3.1 CHOOSING DECOMPOSITIONS..36
3.2 TWO-DIMENSIONAL DECOMPOSITIONS ...37
3.3 DECOMPOSING ARRAYS THAT USE STATICALLY ALLOCATED MEMORY.........................38

3.3.1 How SMS Assigns Processes to Decomposed Dimensions39
3.3.2 A Static Memory Program ...43

3.4 MORE ABOUT DECLARE_DECOMP AND CREATE_DECOMP.................................47
3.4.1 Placement of DECLARE_DECOMP and CREATE_DECOMP47
3.4.2 Load Balancing via Index Scrambling...47

3.5 MORE ABOUT DISTRIBUTE ...49
3.6 MORE ABOUT PARALLEL ..51
3.7 ARRAYS WITH NON-UNIT LOWER BOUNDS ..54

4 TRANSLATING ARRAY INDICES ...56

4.1 TRANSLATING LOCAL INDICES TO GLOBAL INDICES ...56
4.2 TRANSLATING GLOBAL INDICES TO LOCAL INDICES INSIDE LOOPS58
4.3 USING TO_LOCAL TO GENERATE PROCESSOR LOCAL SIZES AND LOOP BOUNDS61
4.4 GLOBAL-TO-LOCAL INDEX TRANSLATION WITH RESTRICTED EXECUTION65

5 HANDLING ADJACENT DEPENDENCIES ..68

5.1 FURTHER DETAILS ON EXCHANGE..68
5.1.1 Using EXCHANGE in the Case of Two-Dimensional Decompositions.................68
5.1.2 Larger Stencils ...77
5.1.3 Miscellaneous...81

5.2 OPTIMIZATIONS...81
5.2.1 Aggregating Exchanges ...82

 3

5.2.2 Trading Communications for Computations Using HALO_COMP84
5.2.3 Pulling Exchanges Outside of Loops ...88
5.2.4 Using HALO_COMP and TO_LOCAL To Make Subroutines Do Redundant
Computations ...90

5.3 DEBUGGING ADJACENT DEPENDENCIES : CHECK_HALO...92

6 HANDLING COMPLEX DEPENDENCIES USING TRANSFER................................93

6.1 FURTHER DETAILS ABOUT TRANSFER ...93
6.2 APPLYING TRANSFER TO SPECTRAL NWP MODELS ...95

7 HANDLING GLOBAL DEPENDENCIES USING REDUCE..97

7.1 MORE ON STANDARD REDUCTIONS ..97
7.2 BIT-WISE EXACT REDUCTIONS..99

8 OTHER DIRECTIVES ..103

8.1 SERIAL..103
8.2 INSERT AND REMOVE ..107
8.3 IGNORE...107

9 I/O..109

9.1 GENERAL UNFORMATTED I/O...109
9.2 UNFORMATTED I/O OF ELEMENTS OF DECOMPOSED ARRAYS.114
9.3 FORMATTED I/O..116

9.3.1 Formatted Input ...116
9.3.2 Formatted Output...116

9.4 I/O PERFORMANCE TUNING..121
9.4.1 General Guidelines ..122
9.4.2 The SMS Server Process ..122
9.4.3 Serverless I/O ...123
9.4.4 The FLUSH_OUTPUT Directive...124
9.4.5 Improving Output Performance...125
9.4.6 Improving Input Performance..127

10 PROGRAM TERMINATION ..129

10.1 AUTOMATIC CODE GENERATION FOR TERMINATION..129
10.2 EXIT DIRECTIVE ..130
10.3 MESSAGE DIRECTIVE...130

11 BUILDING A PARALLEL PROGRAM...131

11.1 OVERVIEW ..131
11.2 PPP GENERATED OUTPUT FILES...131
11.3 BUILDING SMS PARALLEL SOURCE CODE..131

11.3.1 PPP Command Line Options ...131
11.3.2 Examples ..132

11.4 BUILDING PPP EXECUTABLES ..135

 4

11.4.1 Makefile Compiler and Linker Options ...136
11.4.2 Include File Handling ..136
11.4.3 Building the Object Files ...137
11.4.4 Building the Executable ...137

11.5 PPP ERROR REPORTING..138
11.5.1 Parsing Errors ...138
11.5.2 Semantic Errors ...139

11.6 COMPILATION ERRORS..140

12 RUNNING A SMS PROGRAM ...141

12.1 INTRODUCTION ...141
12.2 OPTIONAL COMMAND LINE ARGUMENTS ...141
12.3 RUN-TIME ENVIRONMENT VARIABLES ..142
12.4 RUN-TIME ERROR MESSAGES ...143

 5

1 Introduction

This document describes how the Scalable Modeling System's (SMS) directives can be used to
parallelize a serial Fortran program for distributed or shared memory machines. SMS is intended
for use with programs that perform computations on regular gridded data sets. The primary
application area thus far has been Numerical Weather Prediction (NWP) models. SMS has been
used to parallelize NWP models that use finite difference approximation (FDA) or the spectral
transform method. SMS is general enough that it should be useful for parallelizing similar
programs in other application areas.

Before reading this document, the reader should first read the companion overview document
"SMS: A Directive-Based Parallelization Tool for Shared and Distributed Memory High
Performance Computers". It is assumed that the reader of this Users Guide is familiar with the
concepts and terms introduced in the overview document. The reader should also be familiar
with basic parallel processing concepts such as distributed and shared memory, message latency
and bandwidth, the Single Program Multiple Data (SPMD) programming model, and dependence
analysis. The overview document describes these concepts briefly and contains references for
further reading. After reading this Users Guide, the reader should have a good understanding of
the steps that need to be taken to parallelize a serial program using the SMS directives. If more
detailed information about any directive is needed, the reader should refer to the companion
reference document, "SMS Reference Manual". Answers to common questions and detailed
discussions of problems not covered here may be found on the SMS FAQ web site at:

http://www-ad.fsl.noaa.gov/ac/SMS_FAQ.html

1.1 Organization of this Document

The SMS Users Guide begins by introducing the SMS directives in their simplest form. Section
2 introduces the most fundamental SMS directives with simple example programs that use the
method of finite difference approximation. This section also introduces other SMS directives
that are useful in transform-based programs such as spectral NWP models. The remaining
sections describe in detail how the SMS directives are used in more complex situations. Section
3 explains how to divide work among multiple processes by the method of data decomposition
and how to parallelize loops. Additional loop index translations needed during parallelization are
described in Section 4. Special directives that provide direct control over code translation are
introduced in Section 8. Sections 5, 6 and 7 cover further details about the inter-process
communication directives introduced in Section 2. Section 9 describes parallel I/O. Directives
that control program termination are dealt with in Section 10. Sections 11 and 12 explain how to
build and run parallel SMS programs.

 6

1.2 Terms and Conventions

Throughout most of this document, the term "process" is used instead of "processor" or "CPU".
"Process" is slightly more general because it is possible to run more than one process on a single
"processor" (and this may actually make sense on some types of CPU's that provide direct
hardware support for multi-threaded applications). However, on most machines there will be a
one-to-one mapping of processes to processors.

Fortran source code will appear in courier font. When program identifiers appear inside the
main body of text, they will also be italicized. Large blocks of code will include line
numbers to simplify discussions. Commands will also appear in courier font and will be
preceded by a generic command line prompt, ">>”. The results of commands will appear in
courier font as well. Warning messages output by SMS will be courier bold. File
names will appear in italics when not in code examples or command lines. SMS directives will
appear in bold in code examples. When directive parameters appear in the text they will be
courier font, bold and italicized. Sometimes example code will be a slightly
modified version of a previous example. In that case, the changed lines will be highlighted.

 7

2 Getting Started

2.1 Basic Parallelization Steps

The first step in any parallelization effort is to understand the performance characteristics of the
serial program. Program components that take little time to run may not need to be parallelized
at all. Next, dependence analysis is performed to identify the places in the code where inter-
process communication may be required. Dependencies will be discussed as relevant SMS
directives are introduced. A strategy for dividing the work among the processes must then be
chosen. SMS uses the method of domain decomposition in which portions of large arrays, and
their associated computations, are assigned to each process. The dependence analysis is used to
help pick optimal decompositions that will minimize inter-process communication. Finally, SMS
directives are added to parallelize the code.

To build the parallel code, the Parallelizing Pre-Processor (PPP) is first run to translate the code
with directives into new parallel source code. The translated code is then compiled and linked
with SMS libraries to produce an executable program that can be run on multiple processes. The
smsRun command is used to run the parallel program.

PPP supports many common extensions to ANSI standard Fortran77, as will be seen in the code
examples that follow. A few Fortran90 language features (such as full array assignment) are also
supported. Other language extensions supported include namelist, pointer, include, do-enddo,
automatic arrays, and while statements. A more detailed description of supported language
features can be found at the following SMS site:

http://www-ad.fsl.noaa.gov/ac/SMS_Supported_Fortran_Features.html

2.2 A Very Simple Program

Below is a simple Fortran program that prints a message on the screen:

 program basic_ex1
 print *,'HELLO'
 end

If this program were stored in a file named basic_ex1.f, it could be built using the following
command:

>> f77 -o basic_ex1 basic_ex1.f

The above command assumes that the Fortran compiler is named “f77”. When run, the program
produces the expected output on the screen:

 8

>> basic_ex1

 HELLO

This program is simple enough that a parallel version can be built directly without adding any
SMS directives. To build with SMS, first run the Parallel Pre-Processor (PPP) to convert the
print statements into parallel print statements:

>> ppp basic_ex1.f

The above command assumes that the SMS environment variable has been correctly set and that
$SMS/bin is in the current path. For example, if SMS is installed in directory /usr/local/sms/
then (assuming a c-shell environment) the SMS environment variable should be set as follows:

>> setenv SMS /usr/local/sms

The path could be modified using a command like this:

>> set path= ($SMS/bin $path)

See Section 12.3 for details about setting other environment variables used by SMS. PPP
translates the serial code in basic_ex1.f into parallel code and places the result in file
basic_ex1_sms.f. Depending on the configuration of PPP, other temporary files may also be
created. The next step is to compile basic_ex1_sms.f and link it to the SMS libraries.

>> f77 -c -I $SMS/include basic_ex1_sms.f
>> f77 -o basic_ex1_sms -I $SMS/include basic_ex1_sms.o -L $SMS/lib \
 -lppp_support -lfnnt -lnnt -lsrs -lmpi

The above example assumes common behavior for f77 options "-I" (specify path for include
files) and "-L" (specify path for libraries). Some Fortran compilers handle these options in
slightly different ways. Note that link argument "-lmpi" links to the Message Passing Interface
(MPI) library. SMS uses MPI to perform underlying low-level inter-process communication on
most supported machines. Some machines may require different linkers or linker arguments to
link to their MPI libraries.

The next step is to run the parallel program:

>> smsRun 1 basic_ex1_sms

The smsRun command shown above runs program basic_ex1_sms on 1 process. The output
written to the screen will look something like this:

SMS:: Program started: 1999:12:02::15:55:22
SMS: BITWISE EXACT reductions will NOT be used.
 HELLO
SMS:: Program complete, exiting: 1999:12:02::15:55:22 Elapsed Time = 0 sec.

 9

The text lines beginning with "SMS::" are time-stamps printed by SMS when a program begins
and when it ends. These time-stamps are a useful guide for measuring wall-clock run times. The
second text line is another message from SMS that indicates default behavior of some reduction
operations discussed in Section 7.2. From now on, these diagnostic messages from SMS will
usually be omitted for brevity. The remaining line contains the text we already saw when this
program was run as a serial Fortran code.

The program can be run on 3 processes using the smsRun command like this:

>> smsRun 3 basic_ex1_sms

The following text appears on the screen:

 HELLO

This looks just like the run made on one process. Why? By default, SMS prints only one
message per Fortran print (or write) statement to mimic the behavior of the original serial code as
closely as possible. SMS also provides other "parallel print" modes, as described later in this
section and in detail in Section 9.3.

2.3 Simple Computation on a Regular Grid

Example 2-1 illustrates a very simple code that initializes an array, performs a simple
computation, and prints results on the screen. It consists of two parts: include file basic.inc and
source file basic_ex2.f.

[Include file: basic.inc]

 integer im, jm
 common /sizes_com/ im, jm

[Source file: basic_ex2.f]

 program basic_ex2
 include 'basic.inc'
 im = 10
 jm = 10
 call compute
 end

 subroutine compute
 include 'basic.inc'
 integer i, j, xsum
 integer x(im,jm)
 do 100 j=1,jm
 do 100 i=1,im
 x(i,j) = 1

 10

 100 continue
 xsum = 0
 do 200 j=1,jm
 do 200 i=1,im
 xsum = xsum + x(i,j)
 200 continue
 print *,'xsum = ',xsum
 return
 end

Example 2-1: A simple serial code to initialize an array and print a global sum.

This program initializes array x, sums the elements of x, and prints the result on the screen as
shown below:

>> basic_ex2
 xsum = 100

Notice that this program uses automatic (dynamically allocated) arrays instead of traditional
Fortran77 static array declarations. This technique of dynamic memory allocation is a widely
supported extension to standard Fortran77. The SMS directives support both dynamic and static
memory allocation schemes. Examples with dynamic memory allocation are shown first because
they are slightly simpler. Static allocation examples appear in Section 3.3.

2.3.1 Parallelization by Domain Decomposition

Programs such as this one that involve computations on regular grids are often best parallelized
using the method of domain decomposition. Arrays and the computations performed on them are
"decomposed" (divided up) among the processes as evenly as possible. For example, Figure 2-1,
Figure 2-2, and Figure 2-3 show how array x might be decomposed in the i dimension over one,
two and three processes.

 11

i

j integer x(10,10)

10

10

1
2

3

4
5

6
7

8
9

6 7 8 9 1 3 4 5 2

Figure 2-1: The graphical representation of a non-decomposed 10 by 10 integer array.

10
1 2
6 7

3 4 5
8 9

P2 PROCESS:

5
5

1 3 4 2
1 3 4 2

P1

integer x(5,10) integer x(5,10)

10

“Local” indices:
“Global” indices:

1
2
3
4
5
6
7
8
9 i

j

Figure 2-2: An illustration of a 10 by 10 array decomposed over two processes. These integer arrays are now
local arrays declared by each process. Local addressing is used to access array elements.

 12

“Local” indices:

1
2
3
4
5
6
7
8
9

10

integer x(3,10) integer x(3,10)
integer x(4,10)

PROCESS:

3 4 2
6 7 5

1 3 1 2
1 3 4 2

1 2 3
8 9 10 “Global” indices:

P1 P2 P3

i

j

Figure 2-3: A 10 by 10 array decomposed over three processes. In this example, the locally declared size of
process P2 is larger than the sizes of P1 or P3.

Note that the sub-domains of array x become smaller as the number of processes increases.
These sub-domains are referred to as "local" arrays because they cannot be accessed by other
processes on a distributed memory machine. In SMS terms, the original array x in the serial
code is sometimes referred to as a "global array". Indices used to access a global array are called
"global indices" while indices used to access a local array are called "local indices". Similarly,
sizes of the dimensions of a global array are called "global sizes" and sizes of the dimensions of a
local array are called "local sizes". SMS treats memory as if it were distributed because this
works on machines with either shared or distributed memory.

In this program, domain decomposition of array x requires three basic steps. First, the way in
which x will be decomposed must be described. For this simple example, we choose to
decompose only in the i dimension. (Decompositions of two dimensions are discussed in
Section 3.2). Second, the declarations of array x should be modified to reflect smaller local
sizes. Finally, the start and stop indices of each relevant loop must be changed to reflect the
smaller range of local indices. These three steps are accomplished using four SMS directives.
The DECLARE_DECOMP and CREATE_DECOMP directives are used to describe a
decomposition. Array declarations are modified using the DISTRIBUTE directive while loop
start and stop indices are changed using the PARALLEL directive. These directives have been
inserted into the serial program as shown in Example 2-2 :

 13

[Include file: basic.inc]
 1 integer im, jm
 2 common /sizes_com/ im, jm
 3 CSMS$DECLARE_DECOMP(DECOMP_I)

[Source file: basic_ex2.f]

 1 program basic_ex2
 2 include 'basic.inc'
 3 im = 10
 4 jm = 10
 5 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
 6 call compute
 7 end
 8
 9 subroutine compute
10 include 'basic.inc'
11 integer i, j, xsum
12 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
13 integer x(im,jm)
14 CSMS$DISTRIBUTE END
15 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
16 do 100 j=1,jm
17 do 100 i=1,im
18 x(i,j) = 1
19 100 continue
20 xsum = 0
21 do 200 j=1,jm
22 do 200 i=1,im
23 xsum = xsum + x(i,j)
24 200 continue
25 CSMS$PARALLEL END
26 print *,'xsum = ',xsum
27 return
28 end

Example 2-2: A simple serial code with comment-based SMS directives added.

Notice that each of the SMS directives begins with five characters "CSMS$" which makes it a
Fortran comment. This is true for all SMS directives. The advantage of using comment-based
directives is that the original serial program can still be built and run after directives are added.

Also, note that both the DISTRIBUTE and PARALLEL directives come as BEGIN-END pairs.
When an SMS directive appears in this form, its scope consists of all lines of code between the
"BEGIN" and "END" directives. Some SMS directives, such as TRANSFER (Section 6) and
REDUCE (Section 7) may be used either alone or as a BEGIN-END pair. The text translation
effects of a BEGIN-END directive pair do not extend into called subroutines.

The first directive, DECLARE_DECOMP, is used to give a name to the SMS decomposition that
will be used to divide among the processes the work done in loops 100 and 200. In this
DECLARE_DECOMP directive the single parameter, DECOMP_I, is the user-chosen name for

 14

the decomposition. Any valid Fortran variable name (up to 20 characters long) may be used to
name a decomposition provided it does not conflict with any variable in the serial code.

Next, the CREATE_DECOMP directive is used to describe what kind of decomposition
DECOMP_I will be. The first parameter is the decomposition name DECOMP_I specified in the
DECLARE_DECOMP directive. The second parameter, <im>, describes the decomposition as
a 1-dimensional decomposition where the number of data points in the original serial dimension
(the global size) is im. The last parameter, <0>, indicates that this decomposition will have no
halo regions (halo thickness = 0). Halo regions are introduced later in this section and are
described in detail in Section 5.1.

The third directive, DISTRIBUTE, associates arrays with decompositions. The second
parameter is used to indicate how array dimension(s) correspond to the dimensions of the
decomposition named DECOMP_I. In this simple one-dimensional decomposition, <im>
indicates that all array dimensions of size im will be decomposed as described by the single
dimension of the SMS decomposition named DECOMP_I. The distinction between "dimension
of an array" and "dimension of an SMS decomposition" will become more clear in the two-
dimensional decomposition examples shown later in Section 3.2.

The DISTRIBUTE directive does two things. First, it identifies array declarations that will be
translated to use local sizes. In the above example program, the DISTRIBUTE directive will
cause PPP to translate the declaration of x to the local declarations shown in Figure 2-1, Figure
2-2, and Figure 2-3. The second task of DISTRIBUTE is to provide information about how each
array is decomposed to other SMS directives and to support automatic parallelization of binary
I/O. These features are described in detail in later sections.

Finally, the PARALLEL directive identifies loops that must be modified to span the smaller local
arrays during translation. The second parameter, <i>, indicates that loops with loop index i
should be translated to span the decomposed dimension of array x. For example, if the program
in Example 2-1 is run on two processes then i loops 100 and 200 will span local indices 1
through 5 on each process. A second function of the PARALLEL directive is to provide other
enclosed directives with a "default" SMS decomposition. Directives such as TO_GLOBAL,
TO_LOCAL, GLOBAL_INDEX, and HALO_COMP can all determine the current SMS
decomposition from an enclosing PARALLEL directive. Thus, it is not necessary to use a
decomposition name in these directives when they appear inside a PARALLEL directive. These
directives are described in more detail in later sections.

Building this code is a bit more complicated than the previous example due to the presence of the
include file that contains a directive. Two commands are now needed. The first translates the
include file:

>> ppp --header basic.inc

 15

The "--header" option to the PPP command indicates that the file is an include file and must be
translated differently than a standard Fortran source file. In the command above, include file
basic.inc will be translated into new SMS include file basic.inc.SMS. The second
command requires PPP option "--Finclude" to translate the Fortran source file:

>> ppp --Finclude=basic.inc basic_ex2.f

The "--Finclude" option to the PPP command indicates that file basic.inc is an include file
that has been translated by PPP. During translation of source file basic_ex2.f, any lines that
include this file will be translated from

 include 'basic.inc'
to
 include 'basic.inc.SMS'

to ensure that the translated include file is used.

Running this program on one process produces the expected result.

>> smsRun 1 basic_ex2_sms
 xsum = 100

However, when this program is run on two and three processes, the values of xsum differ from
the serial run.

>> smsRun 2 basic_ex2_sms
 xsum = 50

>> smsRun 3 basic_ex2_sms
 xsum = 30

Why did the parallel program produce incorrect results? The answer lies in the computations
made in loop 200. In this loop, all of the elements of array x are summed and the result is placed
in variable xsum. However, when the program is run on two or three processes, each process
sums only its own local sub-domain of x as illustrated in Figure 2-4, and Figure 2-5. To get a
global result, we will need an additional directive that will be introduced later in this section.

 16

j i
xsum = ΣΣx(i,j)

P1: xsum = 50 P2: xsum = 50

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

P1

10

10

1
2
3
4
5
6
7
8
9

i

j

6 7 5 1 3 4 2 8 9 “Global” indices:

PROCESS:

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

P2

Figure 2-4: Each process sums their local portion of the array x.

P1: xsum = 30 P2: xsum = 40 P3: xsum = 30

1
2
3
4
5
6
7
8
9

10

“Global” indices:

PROCESS:

i

j

P1

1 3 2

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

6 7 5 4

P2

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

8 9 10

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

P3

xsum = ΣΣx(i,j)

 17

Figure 2-5: In this example, local sums are produced on each of the three processes.

2.3.2 Parallel Printing

By default, only one process will print a message when a print statement is encountered.
Therefore, the value of xsum printed is the value of xsum computed locally only on the printing
process. We can see the value of xsum on every process by changing the default print behavior
with the PRINT_MODE directive. The print statement in the above program would be modified
as shown below:

CSMS$PRINT_MODE(ASYNC) BEGIN
 print *,'xsum = ',xsum
CSMS$PRINT_MODE END

This PRINT_MODE directive changes the print mode from the default mode to "asynchronous"
mode. When a print statement is encountered in asynchronous print mode, each process will
print a message to the screen. When run on two processes, the following results are printed:

>> smsRun 2 basic_ex2_sms
 xsum = 50
 xsum = 50

Clearly, each process has computed the correct sum for its local half of array x. When run on
three processes we may see any of the following results:

>> smsRun 3 basic_ex2_sms
 xsum = 40
 xsum = 30
 xsum = 30

>> smsRun 3 basic_ex2_sms
 xsum = 30
 xsum = 40
 xsum = 30

>> smsRun 3 basic_ex2_sms
 xsum = 30
 xsum = 30
 xsum = 40

In the asynchronous print mode, the messages printed by each process may come out in any
order. Another parallel print mode supported by SMS is the "ORDERED" print mode does
preserve process order. Section 9.3 describes the SMS print modes in more detail.

2.3.3 Reduction

We have seen that each process has computed the correct sum for its local sub-domain of array
x. To generate the same result as the original serial code, these local sums must be added

 18

together as shown in Figure 2-6 and Figure 2-7. In more general terms, the computed value of
xsum depends on all of the values of array x. This is known as a "global dependence" because
the result of the computation depends on every element of global array x.

 P1 P2

xsum = 50 xsum = 50

xsum = 100

xsum = 100 xsum = 100

P1 P2

Figure 2-6: In this example, the reduction gathers the local sums, computes a global sum and then broadcasts
the result out to the processes.

xsum = 30

P1 P2 P3

xsum = 30 xsum = 40

xsum = 100

P1 P2 P3

xsum = 100 xsum = 100 xsum = 100

 19

Figure 2-7: A reduction performed on three processes produces a global sum of 100 on every process.

The REDUCE directive is used to resolve this dependence. To use the REDUCE directive, insert
the following line immediately before the print statement on line 26 of Example 2-2:

CSMS$REDUCE(xsum,SUM)

The REDUCE directive performs communications necessary to reduce the local values of a
variable on each process to a single value that is identical on all processes. A specified operator
is used to combine the values from each process. The first parameter indicates that xsum is the
name of the variable to be reduced. The second parameter, SUM, specifies that the local values of
xsum will be summed during reduction. Reductions are described in more detail in Section 7.
The parallel program now produces the expected results when run on various numbers of
processes:

>> smsRun 2 basic_ex2_sms
 xsum = 100
>> smsRun 3 basic_ex2_sms
 xsum = 100

2.4 Boundary Initialization

In Example 2-2 (page 13), all elements of array x were initialized to the same value. Often, it is
desirable to initialize array elements differently depending on their location. This occurs often in
NWP models where elements near the model boundaries may be treated differently than other
array elements. For example, the following variant of subroutine compute in Example 2-2 sets
elements on the array boundaries where i=1 or i=im to 2 and all other elements to 1 as
illustrated in Figure 2-8, and specified in Example 2-3.

 20

j

1 1 1 1 2
1 1 1 1 2

1 1 1 1 2
1 1 1 1 2

1 1 1 1 2
1 1 1 1 2

1 1 1 1 2
1 1 1 1 2

1 1 1 1 2

1 1 1 1 2

i

6 7 5

1

2

3

4

5

6

7

8

9

10

1 3 4 2 8 9 10

xsum = 120

2 1 1 1 1
2 1 1 1 1

2 1 1 1 1
2 1 1 1 1

2 1 1 1 1
2 1 1 1 1

2 1 1 1 1
2 1 1 1 1

2 1 1 1 1

2 1 1 1 1

xsum = ΣΣx(i,j)
i j

Figure 2-8: An illustration of a boundary initialization where edge point values are different than interior
points.

 1 subroutine compute
 2 include 'basic.inc'
 3 integer i, j, xsum
 4 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
 5 integer x(im,jm)
 6 CSMS$DISTRIBUTE END
 7 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
 8 do 100 j=1,jm
 9 do 100 i=1,im
10 x(i,j) = 1
11 100 continue
12 do 110 j=1,jm
13 x(1,j) = 2
14 x(im,j) = 2
15 110 continue
16 xsum = 0
17 do 200 j=1,jm
18 do 200 i=1,im
19 xsum = xsum + x(i,j)
20 200 continue

 21

21 CSMS$PARALLEL END
22 CSMS$REDUCE(xsum,SUM)
23 print *,'xsum = ',xsum
24 return
25 end

Example 2-3: Boundary Initialization requires special handling.

When the serial version of Example 2-3 is run, the following results are printed on the screen:

>> basic_ex3
 xsum = 120

However, when the parallel code is run on more than one process, results are unpredictable:

>> smsRun 2 basic_ex3_sms
 xsum = 138
>> smsRun 3 basic_ex3_sms
<core dump>

The reason for these erroneous results can be seen by examining new loop 110 in detail. Line 14
in loop 110 contains the following statement:

 x(im,j) = 2

This statement will perform the following assignments:

 x(10, 1) = 2
 x(10, 2) = 2
...
 x(10,10) = 2

However, on two processes, each sub-domain of array x has local size x(5,10) (see Figure
2-2) so x(10,10) is out of bounds. In fact, this statement will cause an out-of-bounds
assignment during any run on two or more processes. The behavior of any program that
performs such assignments is unpredictable.

The statement on line 13 also causes incorrect results, even though it does not do out-of-bounds
assignment:

 x(1,j) = 2

This statement will perform the following assignments:

 x(1, 1) = 2
 x(1, 2) = 2
...
 x(1,10) = 2

 22

However, these assignments will not produce the desired results when two or more processes are
used because the index in the i dimension ("1") is a global index. The effects of this erroneous
assignment statement are shown in Figure 2-9 and Figure 2-10.

“Global” indices:

do j=1,10
 x(1,j) = 2
enddo

ERRONEOUS ASSIGNMENTS

1 2 5
6 7 5

1 3 4 2
1 3 4 2

3 4 5
8 9 10

“Local” indices:

2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1

2 1 1 1 1
2 1 1 1 1

2 1 1 1 1

1

2

3

4

5

6
7

8

9

10

PROCESS: P1 P2

2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1

i

j

Figure 2-9: Boundary initialization of decomposed data require special handling to avoid erroneous
assignments on local index 1 by process P2.

 23

j

3 42

6 75

1 3 12

1 3 42

1 2 3

8 9 10

“Local” indices:

“Global” indices:

i

PROCESS:

1

2

3

4

5

6

7

8

9

10

P1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

P2

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

P3

do j=1,10
 x(1,j) = 2
enddo

ERRONEOUS ASSIGNMENTS

Figure 2-10: Boundary initialization of global index 1 will cause erroneous assignments in the local arrays on
process P2 and P3.

Two problems must be solved to repair this code. First, the global indices 1 and im must be
translated to their local equivalents. Second, the assignment statements must be modified so they
are only executed on the processes that contain the specified global indices in their local sub-
domains. The GLOBAL_INDEX directive solves these problems as shown below:

 do 110 j=1,jm
CSMS$GLOBAL_INDEX(1) BEGIN
 x(1,j) = 2
 x(im,j) = 2
CSMS$GLOBAL_INDEX END
 110 continue

 24

The GLOBAL_INDEX directives perform the correct index translations and ensure that the
enclosed statements are only executed on the appropriate processes. The parameter in the
GLOBAL_INDEX directive, "1", indicates that these translations will be applied to array
indices that correspond to the first (and in this case only) decomposed dimension. In this case,
the decomposed dimension corresponds to the i dimension of array x. (The concept of
"decomposed dimension" is explained in detail in Section 3.) The effects of the
GLOBAL_INDEX directives on the assignments of x(1,j) and x(im,j) are shown for the
two process case in Figure 2-11.

1 2 5
6 7 5

1 3 4 2
1 3 4 2

3 4 5
8 9 10

“Local” indices:
“Global” indices:

1 1 1 1 2
1 1 1 1 2
1 1 1 1 2
1 1 1 1 2
1 1 1 1 2

1 1 1 1 2
1 1 1 1 2
1 1 1 1 2
1 1 1 1 2
1 1 1 1 2

i

j

1

2

3

4

5

6

7

8

9

10

PROCESS: P1 P2

2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1

2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1

 do j=1,10
CSMS$GLOBAL_INDEX(1) BEGIN
 x(1,j) = 2
 x(im,j) = 2
CSMS$GLOBAL_INDEX END
 enddo

NO ERRONEOUS ASSIGNMENTS

Figure 2-11: GLOBAL_INDEX is used to correctly initialize the boundaries of the array x.

Now when the parallel code is run, results match the serial code:

>> smsRun 2 basic_ex3_sms
 xsum = 120
>> smsRun 3 basic_ex3_sms
 xsum = 120

 25

2.5 A Simple FDA Program

The following example is a FDA program that solves Laplace's equation on a two-dimensional
surface with fixed boundaries using Jacobi relaxation. On a two-dimensional surface, Laplace's
equation takes the form:

x
f

2

2

∂
∂

 +
y
f

2

2

∂
∂

 = 0

A simple approach is to discretize the two-dimensional space and use a finite difference
approximation to the derivatives to seek a numerical solution. The discrete equation is:

 4*f(i,j) - f(i-1,j) - f(i+1,j) - f(i,j-1) - f(i,j+1) = 0

The initial state is f on the boundaries. The boundaries are constant and non-periodic. The above
equation is solved for f(i,j) iteratively until it converges. The solution is said to converge when
the difference between successive solutions is less than a specified threshold. The difference
between values of f(i,j) in two successive iterations is the following:

 df(i,j) = (1/4) * (f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) - f(i,j)

Using the method of Jacobi relaxation, the value of f(i,j) during an iteration is calculated from the
value of f(i,j) computed in the previous iteration as follows:

 fnew(i,j) = fold(i,j) + df(i,j)

In Example 2-4 below, boundary elements of array f are initially set to 2.0 (lines 25-31).
Laplace's equation is then solved and diagnostic messages are printed on the screen. Previously
described SMS directives have already been inserted.

[Source file: laplace.f]
 1 program laplace
 2 include 'basic.inc'
 3 im = 10
 4 jm = 10
 5 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
 6 call laplace
 7 end
 8
 9 subroutine laplace
10 include 'basic.inc'
11 integer i, j, iter
12 real max_error
13 real tolerance
14 parameter (tolerance = 0.001)
15 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
16 real f(im,jm), df(im,jm)

 26

17 CSMS$DISTRIBUTE END
18 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
19 do 100 j=1,jm
20 do 100 i=1,im
21 f(i,j) = 0.0
22 100 continue
23 do 110 j=1,jm
24 CSMS$GLOBAL_INDEX(1) BEGIN
25 f(1,j) = 2.0
26 f(im,j) = 2.0
27 CSMS$GLOBAL_INDEX END
28 110 continue
29 do 120 i=1,im
30 f(i, 1) = 2.0
31 f(i,jm) = 2.0
32 120 continue
33 iter = 0
34 max_error = 2.0 * tolerance
35 C main iteration loop...
36 do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))
37 iter = iter + 1
38 max_error = 0.0
39 do 200 j=2,jm-1
40 do 200 i=2,im-1
41 df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
42 & - f(i,j)
43 200 continue
44 do 300 j=2,jm-1
45 do 300 i=2,im-1
46 if (max_error .lt. abs(df(i,j))) then
47 max_error = abs(df(i,j))
48 endif
49 300 continue
50 CSMS$REDUCE(max_error, MAX)
51 do 400 j=2,jm-1
52 do 400 i=2,im-1
53 f(i,j) = f(i,j) + df(i,j)
54 400 continue
55 enddo
56 CSMS$PARALLEL END
57 print *, 'Solution required ',iter,' iterations'
58 print *, 'Final error = ', max_error
59
60 return
61 end

Example 2-4: Serial code plus directives illustrate a parallel solution to Laplace’s equation. This solution,
using a one-dimensional decomposition, produces incorrect results.

Notice that the REDUCE directive uses the maximum operator to reduce max_error via
parameter MAX. The Jacobi relaxation will also work if average error is used instead of
maximum error. However, using maximum error guarantees bit-wise exact results as described
in Section 7.2.

 27

When the serial program is run, the following messages are printed on the screen:

>> laplace
 Solution required 85 iterations
 Final error = 9.9968910E-4

When the parallel program is run on more than one process, results are incorrect:

>> smsRun 2 laplace_sms
 Solution required 45 iterations
 Final error = 9.9253654E-4

>> smsRun 3 laplace_sms
 Solution required 131 iterations
 Final error = 9.9420547E-4

Why do results change for different numbers of processes? The answer lies in the computations
made on lines 41 and 42:

df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) - f(i,j)

Here, each df(i,j) is computed from f(i-1,j), f(i+1,j), f(i,j-1), f(i,j+1), and
f(i,j). This type of dependence is called an "adjacent dependence" because the computation
at point (i,j) depends on data at adjacent (or "nearby") points. Adjacent dependencies are
often represented graphically using a “stencil” as shown in

Figure 2-12 and Figure 2-13.

y(i-1,j)

y(i,j)

y(i,j+1)

y(i+1,j)

y(i,j-1)

x(i,j) = y(i,j) + y(i+1,j) + y(i-1,j) + y(i,j-1) + y(i,j+1)

“Stencil”: x(i,j) depends on

Figure 2-12 This five point stencil illustrates the dependencies of the array y on the computation of x.

 28

x(i,j) = y(i,j) + y(i+1,j) + y(i+2,j) + y(i,j+1) + y(i,j+2)
 + y(i-1,j) + y(i-2,j) + y(i,j-1) + y(i,j-2)
 + y(i+1,j+1) + y(i+1,j-1)

 + y(i-1,j+1) + y(i-1,j-1)

“Stencil”: x(i,j) depends on

Figure 2-13: A thirteen point stencil illustrates the dependencies required when x must access data two
points in each direction on y in the code segment shown.

In Figure 2-14 stencils have been overlaid on graphical representations of the sub-domains
assigned to each process during a run made on three processes. The stencil centered at global
point(2,2) on process P1 illustrates that computations at this grid point require values from
global points(2,2), (2,1), (1,2), (2,3), and (3,2). These array elements are all inside
the local sub-domain of process P1. Similarly, computations at global point (5,8) depend only
on array elements inside the local sub-domain of process P2. However, computations on sub-
domain boundaries cannot be performed so easily. For example, the stencil centered at global
point (7,5) on process P2 depends on the element at global point(8,5) which is located in
the local sub-domain of process P3. Similarly, the stencil centered at global point(8,2) on
process P3 requires an element from process P2. The results of the parallel program above are
incorrect because no data is sent between processes to resolve the adjacent dependence in loop
200.

 29

“Global” indices:

Out-of-bounds
access

i

j

3 4 2
6 7 5

1 3 1 2

1

2

3

4

5

6

7

8

9

10

1 3 4 2
1 2 3
8 9 10

“Local” indices:

PROCESS: P1 P2 P3

Figure 2-14: Illustration of how an adjacent dependency causes out of bounds data references on processes
P2 and P3.

It is possible to solve this problem by sending single data points between processes. However,
on high-latency machines, sending messages that contain only one array element is very
inefficient compared to sending messages that contain many array elements. The most common
approach to handle adjacent dependencies is to create "halo regions" to store these data as shown
in Figure 2-15. When data in these regions are needed, the halo regions are updated by swapping
columns (or larger blocks) of data between processes as shown in Figure 2-16. This form of
inter-process communication is called "exchange" and is supported by the EXCHANGE
directive.

 30

j

“Global” indices:

i

4 5 3
6 7 5

1 3 2 2

1
2
3
4
5
6
7
8
9

10

1 3 4 2
2 3 4
8 9 10

“Local” indices:

PROCESS: P1 P2 P3

4
4

1
3

6
8

1
7

“HALO” REGIONS

Figure 2-15: Halo regions eliminate the out of bounds array references.

i

j

1
2
3
4
5
6
7
8
9

10

PROCESS: P1 P2 P3

 31

Figure 2-16: Halo regions are updated by exchanging data between adjacent processes.

Below is a corrected parallel program that uses halo regions and includes exchange
communication:

[Source file: laplace.f]

 1 program laplace
 2 include 'basic.inc'
 3 im = 10
 4 jm = 10
 5 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <1>)
 6 call laplace
 7 end
 8
 9 subroutine laplace
10 include 'basic.inc'
11 integer i, j, iter
12 real max_error
13 real tolerance
14 parameter (tolerance = 0.001)
15 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
16 real f(im,jm), df(im,jm)
17 CSMS$DISTRIBUTE END
18 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
19 do 100 j=1,jm
20 do 100 i=1,im
21 f(i,j) = 0.0
22 100 continue
23 do 110 j=1,jm
24 CSMS$GLOBAL_INDEX(1) BEGIN
25 f(1,j) = 2.0
26 f(im,j) = 2.0
27 CSMS$GLOBAL_INDEX END
28 110 continue
29 do 120 i=1,im
30 f(i, 1) = 2.0
31 f(i,jm) = 2.0
32 120 continue
33 iter = 0
34 max_error = 2.0 * tolerance
35 C main iteration loop...
36 do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))
37 iter = iter + 1
38 max_error = 0.0
39 CSMS$EXCHANGE(f)
40 do 200 j=2,jm-1
41 do 200 i=2,im-1
42 df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
43 & - f(i,j)
44 200 continue

 32

45 do 300 j=2,jm-1
46 do 300 i=2,im-1
47 if (max_error .lt. abs(df(i,j))) then
48 max_error = abs(df(i,j))
49 endif
50 300 continue
51 CSMS$REDUCE(max_error, MAX)
52 do 400 j=2,jm-1
53 do 400 i=2,im-1
54 f(i,j) = f(i,j) + df(i,j)
55 400 continue
56 enddo
57 CSMS$PARALLEL END
58 print *, 'Solution required ',iter,' iterations'
59 print *, 'Final error = ', max_error
60
61 return
62 end

Example 2-5: The laplace program which has been corrected to exchange the array f. Resolves the adjacent
dependencies in loop 200.

The third parameter of CREATE_DECOMP directive has been changed to <1>. This indicates
that all arrays decomposed using DECOMP_I will have a halo region one point thick added in the
first decomposed dimension (the i dimension in this case). The EXCHANGE directive has been
added on line 39. Its only parameter is the name of the variable (f) to be exchanged. The
EXCHANGE directive is placed immediately before loop 200 to ensure that halo regions of f are
updated prior to the computations that need them. The EXCHANGE directive is described in
more detail in section 5.1.

Now the parallel program produces the correct results on more than one process:

>> smsRun 2 laplace_sms
 Solution required 85 iterations
 Final error = 9.9968910E-4

>> smsRun 3 laplace_sms
 Solution required 85 iterations
 Final error = 9.9968910E-4

Notice that only interior process P2 has halo regions on both sides in Figure 2-15. A current
limitation of SMS is that it only supports non-periodic boundary conditions. Therefore, halo
regions are only needed on one side of processes that are on the edge of a global array (i.e.
processes P1 and P3). This limitation will be removed in a future SMS release.

 33

2.6 Writing Output to Disk

The Laplace solver (Example 2-5) would be more useful if the final state of array f could be
written to disk. This is easily done by adding the following code fragment immediately before
the return statement (line 61) in subroutine laplace:

 open(10, file='f.out', form='unformatted')
 write(10) f
 close(10)

When the serial program is run, file f.out is written. For the SMS parallel program, no
additional directives are required to handle this output. By default, SMS automatically generates
f.out in exactly the same format as the serial program, for any number of processes. However,
SMS can also produce other file formats as discussed in Section 9.

2.7 Using Multiple Decompositions

So far, we have seen how to parallelize a program that only requires a single domain
decomposition. However, many programs require the use of different decompositions at
different times to run efficiently in parallel. The TRANSFER directive provides the means to
transform arrays between decompositions. Spectral NWP models are a prime candidates for
application of TRANSFER (see Section 6).

In this section, we present a simple case where two different decompositions are needed. In
Example 2-6, the statement at line 42 contains a dependency called a "recurrence relation". In
this statement, an update to x(i,j) depends on x(i,j-1) which was updated in the previous loop
iteration. SMS does not currently provide directives that directly support parallelization of this
type if the array dimension is decomposed. SMS will support simple one-dimensional recurrence
relations in a future release. In this example, the second (j) dimension is decomposed, so SMS
cannot handle this statement. Similarly, the loop starting at line 61 prevents decomposition in i.
One solution, given in Example 2-6, is to decompose x in i and y in j.

[transfer.inc]
 1 integer im, jm
 2 common /sizes_com/ im, jm
 3
 4 CSMS$DECLARE_DECOMP(DECOMP_I)
 5 CSMS$DECLARE_DECOMP(DECOMP_J)
 6

[transfer.f]
 1 program TRANSFER1
 2 implicit none
 3
 4 include 'transfer.inc'
 5
 6 integer i

 34

 7 integer j
 8
 9 im = 60
10 jm = 90
11
12 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
13 CSMS$CREATE_DECOMP(DECOMP_J, <jm>, <0>)
14
15 call DO_IT
16
17 end
18
19
20
21 subroutine DO_IT
22 include 'transfer.inc'
23
24 CSMS$DISTRIBUTE(DECOMP_I, im) BEGIN
25 real x(im,jm)
26 CSMS$DISTRIBUTE END
27
28 CSMS$DISTRIBUTE(DECOMP_J, jm) BEGIN
29 real y(im,jm)
30 CSMS$DISTRIBUTE END
31
32 C BEGIN
33
34 x = 1.0
35
36 CSMS$PARALLEL(DECOMP_I, <i>) BEGIN
37
38 C dependency in the j dimension that
39 C SMS does not provide directives to parallelize
40 do j = 2, jm
41 do i = 1, im
42 x(i,j) = x(i,j) + x(i,j-1)
43 end do
44 end do
45 CSMS$PARALLEL END
46
47 CSMS$TRANSFER(<X, Y>) BEGIN
48 do j = 1, jm
49 do i = 1,im
50 y(i,j) = x(i,j)
51 end do
52 end do
53 CSMS$TRANSFER END
54
55 call CALCS_THAT_MODIFY_X(x)
56
57 CSMS$PARALLEL(DECOMP_J, <j>) BEGIN
58
59 C dependency in the i dimension that
60 C SMS does not provide directives to parallelize

 35

61 do j = 1, jm
62 do i = 2, im
63 y(i,j) = y(i,j) + y(i-1,j)
64 end do
65 end do
66 CSMS$PARALLEL END
67
68 open(10,file='f1',form='unformatted')
69 write(10) y
70 close(10)
71
72 return
73 end

Example 2-6: A simple SMS parallel program that requires two data decompositions due to recurrance
relations in “x” and “y”.

Example 2-6 contains two DECLARE_DECOMP and CREATE_DECOMP directives. The
DISTRIBUTE directive at line 24 uses DECOMP_I to decompose x in i. The DISTRIBUTE
directive at line 28 uses DECOMP_J to decompose y in j. The TRANSFER directive at line 47
generates the communication to transpose x into y as illustrated in Figure 2-17. SMS
implements this by replacing the code between the BEGIN and END TRANSFER directives with
a call to a subroutine that does the transposition. x is referred to as the source array of the
TRANSFER directive and y is referred to as the destination array. The type and rank of the
source and destination arrays must be the same. However, the array sizes may differ.

Transpose

P1 P2

Figure 2-17. An illustration of the data movement required between processes P1 and P2 for a transposition
operation.

 36

3 Decomposing Arrays and Parallelizing Loops

3.1 Choosing Decompositions

In order to choose domain decompositions that will allow optimal performance, the dependencies
of arrays on one another must be analyzed. Usually, several decomposition options are possible.
Decompositions of 3D arrays supported by SMS are shown in Figure 3-1. The dependence
analysis is used to help pick optimal decompositions that will minimize inter-process
communication. Typical FDA NWP models will be optimally decomposed in one or both of the
horizontal dimensions as illustrated "a", "b", or "d" of Figure 3-1. Decompositions used by
typical spectral NWP models are described in Section 6.2.

j
i

k

(a)

(d)

(b)

(e)

(c)

(f)

Figure 3-1: Three-dimensional decompositions supported by SMS.

Other issues to consider when selecting decompositions are the architecture of the machine on
which the program will most likely be run and how many processes will be available. For vector
machines, it is best to leave the inner dimension non-decomposed when possible to maximize
vector lengths. On cache-based machines, it may be best to decompose the inner dimension
instead. For example, in Figure 3-1, decomposition "a" would preserve long vector lengths while
decomposition "b" would not. If the number of processes available were larger than the number

 37

of grid points in the single decomposed dimension, two dimensions would have to be
decomposed.

3.2 Two-Dimensional Decompositions

The full power of the DECLARE_DECOMP, CREATE_DECOMP, DISTRIBUTE, and
PARALLEL directives becomes more apparent when two dimensions are decomposed. Consider
the following example:

[Include file: decomp_ex1.inc]

 1 integer im, jm, km
 2 common /sizes_com/ im, jm, km
 3 CSMS$DECLARE_DECOMP(DECOMP_IJ)

[Source file: decomp_ex1.f]

 1 program decomp_ex1
 2 include 'decomp_ex1.inc'
 3 im = 15
 4 jm = 10
 5 km = 2
 6 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
 7 call compute
 8 end
 9
10 subroutine compute
11 include 'decomp_ex1.inc'
12 integer i, j, k
13 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
14 integer z(im,jm,km)
15 CSMS$DISTRIBUTE END
16 integer zsum
17 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
18 do 100 k=1,km
19 do 100 j=1,jm
20 do 100 i=1,im
21 z(i,j,k) = 1
22 100 continue
23 zsum = 0
24 do 200 k=1,km
25 do 200 j=1,jm
26 do 200 i=1,im
27 zsum = zsum + z(i,j,k)
28 200 continue
29 CSMS$PARALLEL END
30 CSMS$REDUCE(zsum, SUM)
31 print *,'zsum = ',zsum
32 return
33 end

Example 3-1: An SMS program that uses a two dimensional decomposition.

 38

When run, the serial version of this program prints the following message:

>> decomp_ex1
 zsum = 300

Directives CREATE_DECOMP, DISTRIBUTE, and PARALLEL now have more complex
parameters than in the simple examples from Section 2.3. The second parameter to
CREATE_DECOMP, <im, jm>, indicates that the decomposition named DECOMP_IJ has
two decomposed dimensions and that the global size of the first decomposed dimension is im
and the global size of the second decomposed dimension is jm. The third parameter, <0,0>,
indicates that DECOMP_IJ has no halo regions in either decomposed dimension.

The second parameter to DISTRIBUTE, <im>, indicates that array dimensions of size im are
decomposed as described by the first decomposed dimension of DECOMP_IJ. The third
parameter, <jm>, indicates that array dimensions of size jm are decomposed as described by the
second decomposed dimension of DECOMP_IJ. So, the first dimension of array z is
decomposed as described by the first decomposed dimension of DECOMP_IJ and the second
dimension of array z is decomposed as described by the second decomposed dimension of
DECOMP_IJ. The third dimension of array z will not be decomposed. This is decomposition
"d" in Figure 3-1. More details about DISTRIBUTE can be found in Section 3.5.

The second parameter to PARALLEL, <i>, is used to identify loop indices for loops spanning
the first decomposed dimension of DECOMP_IJ. Similarly, the third parameter, <j>, is used to
identify loop indices for loops spanning the second decomposed dimension of DECOMP_IJ.
The PARALLEL directive will translate both the i and j dimensions of loops 100 and 200 to
local loop bounds.

When this code is run on 2 or 3 processes, we see the expected results:

>> smsRun 2 decomp_ex1_sms
 zsum = 300
>> smsRun 3 decomp_ex1_sms
 zsum = 300

3.3 Decomposing Arrays that use Statically Allocated Memory

When dynamic memory allocation is used, SMS automatically sets local array sizes at run-time.
In contrast, when static memory allocation is used, local array sizes must be set by the
programmer. Therefore, it is essential to understand how SMS will assign processes to
decomposed dimensions to avoid slowing execution down on cache machines and wasting
memory on any machine. Even when dynamic memory allocation is used it is useful to
understand process assignment when tuning performance.

 39

3.3.1 How SMS Assigns Processes to Decomposed Dimensions

To better understand process assignment, subroutine "compute" has been modified to print out
the number of array elements each process has in each dimension. The following code replaces
the print statement on line 31 of Example 3-1:

CSMS$PRINT_MODE(ORDERED) BEGIN
 print *,' MY im = ',i-1,' jm = ',j-1,' km = ',k-1
CSMS$PRINT_MODE END

The "ORDERED" print mode ensures that each process prints a message and that messages
always appear in the same order. The ORDERED print mode only works when all processes
execute the enclosed print statement(s). Print modes are discussed in detail in Section 9.

Assume the new program is named decomp_ex2_sms. When it is run on one process, the
following results are printed on the screen:

>> smsRun 1 decomp_ex2_sms
 MY im = 15 jm = 10 km = 2

The results of the one-process run for a single k plane of array z indicate that loops spanned the
full array dimensions (15,10,2), as shown in Figure 3-2.

11 15 14 13 12 6 7 8 9 10 1 3 4 5 2

real z(15,10)

1

2

3

4

5

6

7

8

9

10

i

j

Figure 3-2: Illustration of one “k” plane of the array z required to support a one process run. In this
example, loops will span the entire array.

 40

On two processes:

>> smsRun 2 decomp_ex2_sms
 MY im = 8 jm = 10 km = 2
 MY im = 7 jm = 10 km = 2

Here, one process's loops spanned (8,10,2) and the second process's loops spanned
(7,10,2). In the two process run, SMS decomposed the array in the first dimension as
illustrated in Figure 3-3.

3 7 6 5 4 6 7 8 1 2 1 3 4 5 2

real z(8,10)

1

2

3

4

5

6

7

8

9

10

11 15 14 13 12 6 7 8 9 10 1 3 4 5 2

real z(7,10)

“Local” indices:

“Global” indices:

i

j

Figure 3-3. For a two process run, SMS assigns two processes to the first decomposed dimension (im) and
leaves the second decomposed dimension non-decomposed.

On three processes:

>> smsRun 3 decomp_ex2_sms
 MY im = 5 jm = 10 km = 2
 MY im = 5 jm = 10 km = 2
 MY im = 5 jm = 10 km = 2

 41

In this case, each of the processes' loops spanned (5,10,2). SMS assigned three processes to
the first decomposed dimension (im) and left the second decomposed dimension non-
decomposed. On 4 processes:

>> smsRun 4 decomp_ex2_sms
 MY im = 8 jm = 5 km = 2
 MY im = 7 jm = 5 km = 2
 MY im = 8 jm = 5 km = 2
 MY im = 7 jm = 5 km = 2

Here, two of the process's loops spanned (8,5,2) and the other two process's loops spanned
(7,5,2). SMS assigned two "columns" of processes to the first decomposed dimension (im)
and two "rows" of processes to the second decomposed dimension (jm) as shown in Figure 3-4.

3 7 6 5 4 6 7 8 1 2 1 3 4 5 2

real z(8,5)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

6

7

8

9

10

11 15 14 13 12 6 7 8 9 10 1 3 4 5 2

real z(7,5)

“Local” indices
“Global” indices

Figure 3-4: For a four process run, SMS decomposes in both dimensions.

 42

On eight processes:

>> smsRun 8 decomp_ex2_sms
 MY im = 4 jm = 5 km = 2
 MY im = 4 jm = 5 km = 2
 MY im = 4 jm = 5 km = 2
 MY im = 3 jm = 5 km = 2
 MY im = 4 jm = 5 km = 2
 MY im = 4 jm = 5 km = 2
 MY im = 4 jm = 5 km = 2
 MY im = 3 jm = 5 km = 2

In this case, six of the process's loops spanned (4,5,2) and two of the process's loops spanned
(3,5,2). Here, SMS has assigned four "columns" of processes to the first decomposed
dimension (im) and two "rows" of processes to the second decomposed dimension (jm). This is
illustrated in Figure 3-5.

 43

3 3 2 1 4 2 3 4 1 2 1 3 4 1 2

real z(4,5)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

6

7

8

9

10

11 15 14 13 12 6 7 8 9 10 1 3 4 5 2

real z(3,5)

i

j

“Local” indices
“Global” indices

Figure 3-5: In the eight process run, SMS assigns four processes to the first decomposed dimension and two to
the second.

From these results, it can be seen that SMS will assign more processes to the decomposed
dimension with the largest global size, when possible. When global sizes of decomposed
dimensions are equal, SMS will assign more processes to the second decomposed dimension.
Also, SMS will always attempt to make process layout as close to "square" as possible. The
rules followed by SMS to assign processes to decomposed dimensions are described in detail in
Appendix A. However, it may be easier to simply print local sizes as in the previous example. A
future SMS release will ease the process of setting local array sizes in the static case and will
print out the process layout for each decomposition when it is created.

3.3.2 A Static Memory Program

Example 3-2 illustrates a program using static memory allocation. In this example, the
DECLARE_DECOMP directive requires a new second parameter, <(im/2)+1, jm/2>.
This informs the translator that the decomposition named DECOMP_IJ has two decomposed

 44

dimensions. It also indicates that DECOMP_IJ will be used for arrays that are statically
allocated and that the DISTRIBUTE command should translate sizes of declared array
dimensions corresponding to the first and second decomposed dimensions to local sizes
(im/2)+1 and jm/2 respectively.

[Include file: decomp_ex4.inc]

 1 integer im, jm, km
 2 parameter (im = 15, jm = 10, km = 2)
 3 CSMS$DECLARE_DECOMP(DECOMP_IJ, <(im/2)+1, jm/2>)

[Source file: decomp_ex4.f]

 4 program decomp_ex4
 5 include 'decomp_ex4.inc'
 6 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 7 integer z(im,jm,km)
 8 CSMS$DISTRIBUTE END
 9 integer zsum, i, j, k
10 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
11 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
12 do 100 k=1,km
13 do 100 j=1,jm
14 do 100 i=1,im
15 z(i,j,k) = 1
16 100 continue
17 zsum = 0
18 do 200 k=1,km
19 do 200 j=1,jm
20 do 200 i=1,im
21 zsum = zsum + z(i,j,k)
22 200 continue
23 CSMS$PARALLEL END
24 CSMS$REDUCE(zsum, SUM)
25 print *,'zsum = ',zsum
26 end

Example 3-2: An SMS program that uses static memory allocation requires the local sizes be declared in the
DECLARE_DECOMP directive. In this example, these local sizes are: (im/2)+1 and jm/2.

In static memory cases such as this where the number of processes assigned to a decomposed
dimension does not evenly divide the global size of that dimension, the local sizes used in the
DECLARE_DECOMP directive must be set for the process(es) that use(s) the most memory. As
we saw in Figure 3-4, these are precisely the local sizes needed by SMS for a four-process run.
The term (im/2)+1 takes into account the fact that two of the processes requires local arrays of
size (8,5,2) while the other two requires arrays of size (7,5,2) as illustrated in Figure 3-6.

Since arrays are declared statically, the rules of Fortran77 require that (im/2)+1 and jm/2 be
compile-time constants in order to be used in a declaration statement. The translator handles this
by generating appropriate parameter statements during the translation of the

 45

DECLARE_DECOMP directive. These parameter statements are then used during translation of
array sizes inside DISTRIBUTE directives. Conceptually, the declaration of z on line 7 of
Example 3-2 will be translated to:

 integer z((im/2)+1,jm/2,km)

i

j
PROCESS:

6 7 8 1 3 4 5 2

real z(8,10)

1

2

3

4

5

6

7

8

9

10

6 7 8 1 3 4 5 2

P1, P3

real z(8,10)

P2, P4

3 7 6 5 4 1 2

11 15 14 13 12 9 10

X

X

UNUSED ARRAY
ELEMENTS

“Local” indices:

“Global” indices:

Figure 3-6: For static memory allocation, the size of the decomposed arrays is set in the
DECLARE_DECOMP directive based on the number of processes that will be used to run the program.
Sometimes all the memory declared will not be used as illustrated in processes P2 and P4.

A run made on 8 processes yields expected results. However, a run made on 2 processes
produces the following:

 46

>> smsRun 2 decomp_ex4_sms
 Process: 1 Error at: ./decomp_ex4_sms.f.tmp:10.1
 Process: 1 Error status= -2202 MSG: DECOMPOSED ARRAYS ARE TOO SMALL.
 Process: 1 Aborting...

What happened? From Example 3-2, we saw that the largest local array sizes required on any
process for the two-process run is(8,10,2). However, the DECLARE_DECOMP directive set
local array sizes to ((im/2)+1,jm/2,km) = (8,5,2) which is too small for the two
process run (see Figure 3-6). SMS detects this error at run time, prints the error messages, and
aborts the program.

Why did it work for the 8-process run? Again, from Example 3-2, we saw that the largest local
array sizes required on any process for the eight-process run are(4,5,2). So the local array
sizes were big enough to hold the translated arrays and the program ran as expected. However, it
wasted memory because only half of each declared array was ever used (1:4,*,*).

In addition to wasting memory, performance of the 8-process run might not be optimal on a
cache-based machine because the data used in each array are scattered over a block of memory
twice the needed size. This is likely to result in more cache misses and may degrade
performance, sometimes significantly. This effect becomes more severe as the number of
processes increases. For example, if the program were run on 32 processes, the largest local
array sizes required on any process would be only (2,3,2). Therefore, it is especially
important to declare arrays using the smallest possible sizes for large numbers of processes.

To fix the local arrays sizes for a two-process run, we can modify the sizes in the
DECLARE_DECOMP directive as follows:

CSMS$DECLARE_DECOMP(DECOMP_IJ, <(im/2)+1, jm>)

If the following DECLARE_DECOMP directive were used

CSMS$DECLARE_DECOMP(DECOMP_IJ, <im, jm>)

all translated arrays would be declared full-size. This code could then be run on any number of
processes (provided each process has enough memory). This is very useful during debugging
because one common technique for finding bugs in a parallel code is to compare results for runs
made on different numbers of processes. Once debugging is complete, the
DECLARE_DECOMP directives should be changed to minimize memory use.

In summary, SMS provides the flexibility of allowing memory to be wasted for convenience
during debugging. However, the user should try to minimize memory waste once debugging is
complete. Failure to conserve memory can result in performance degradation on cache-based
machines.

 47

3.4 More About DECLARE_DECOMP and CREATE_DECOMP

3.4.1 Placement of DECLARE_DECOMP and CREATE_DECOMP

It is important to understand a few details concerning DECLARE_DECOMP and
CREATE_DECOMP so these directives can be placed correctly. The SMS code translator, PPP,
converts a DECLARE_DECOMP directive into Fortran declarations of all the variables needed
to store the internal description of an SMS decomposition. So, a DECLARE_DECOMP
directive must be placed before the first executable line of code in a program. Also, if a
decomposition needs to be visible to more than one program unit, then it is best to place the
DECLARE_DECOMP directive in an include file. A CREATE_DECOMP directive is
translated into executable Fortran code that initializes all the internal variables declared in the
translation of the corresponding DECLARE_DECOMP directive. A CREATE_DECOMP
statement may only be placed where it would be legal to write an executable line of Fortran code.

The rules for placing the CREATE_DECOMP and DISTRIBUTE directives differ for programs
that use static or dynamic memory. The CREATE_DECOMP directive can actually appear after
a DISTRIBUTE directive in the static memory case. However, in the dynamic memory case this
is not possible because number of decomposed dimensions is not known until the
CREATE_DECOMP directive is reached. In this case, the code generated by
CREATE_DECOMP must execute prior to any subroutine containing DISTRIBUTE directives.

3.4.2 Load Balancing via Index Scrambling

Ideally, each process will have exactly the same amount of work to do. In practice, most NWP
models have computations that vary spatially so some processes may have more work to do than
others. This is commonly known as load imbalance. Load imbalances slow down a parallel
program because some processes with less work are forced to wait for processes with more work
to catch up. One example is load imbalance in a global NWP model due to differences in
computation required for day and night grid-points. In this case more computation is required at
longitudes where the sun shines. There are also load imbalances between latitudes in the
northern and southern hemispheres during winter or summer. Figure 3-7 illustrates longitude
scrambling.

 48

Figure 3-7 Longitude scrambling is used to reduce load imbalances due to computational differences
stemming from day night cycles in a global NWP model. In this case, the model is run using 2 processes. One
process has the brightly covered segments; the other has the darker colored segments. The effect is to give
each process half the day-time points and half the night-time points.

The CREATE_DECOMP directive supports a feature called index scrambling that can reduce the
effects of such load imbalances. Index scrambling is only allowed when there are no adjacent
dependencies in the dimension to be scrambled because "EXCHANGE" communication would
be very expensive if indices were scrambled. Several types of scrambling are supported. These
include longitude scrambling to balance day/night load and latitude scrambling to balance
winter/summer load. Both of these scrambling methods are useful in global NWP models.

To use index scrambling, a fourth parameter is added to the CREATE_DECOMP as shown in the
code fragments below:

CSMS$CREATE_DECOMP(DECOMP_J, <jm>, <0>, <SCRAMBLE_LAT_STRATEGY>)

CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>, <SCRAMBLE_LON_STRATEGY>)

In the first case, parameter <SCRAMBLE_LAT_STRATEGY> indicates that the first decomposed
dimension of DECOMP_J will be scrambled using a method appropriate for balancing load
among latitudes in a global model. In the second case, parameter
<SCRAMBLE_LON_STRATEGY> indicates that the first decomposed dimension of DECOMP_I
will be scrambled using a method appropriate for balancing load among longitudes in a global
model. (Note that neither decomposition has halo regions.) No other code changes are required

 49

to use the scrambling feature. For this reason, it is convenient to add this feature as a
performance optimization once debugging of the non-scrambled parallel code is complete.

3.5 More About DISTRIBUTE

The DISTRIBUTE directive will ignore scalar variables such as integer avg in following code
fragment:

CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
 integer w(im), avg
CSMS$DISTRIBUTE END

The DISTRIBUTE directive will not change the declaration of avg because avg does not have a
dimension of size im in its declaration. Also, avg will be treated as non-decomposed
(duplicated on each process) by the other SMS directives. The behavior is the same as if the
directive and declarations had been written like this:

CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
 integer w(im)
CSMS$DISTRIBUTE END
 integer avg

The DISTRIBUTE directive can decompose several types of arrays as shown the in the following
code fragments:

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 integer x(im,jm,km)
CSMS$DISTRIBUTE END

Here, the first dimension of array x is decomposed as described by the first decomposed
dimension of DECOMP_IJ and the second dimension of array x is decomposed as described by
the second decomposed dimension of DECOMP_IJ. The third dimension of array x is not
decomposed.

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 real a(im,km,jm)
CSMS$DISTRIBUTE END

Here, the first dimension of array a is decomposed as described by the first decomposed
dimension of DECOMP_IJ and the third dimension of array a is decomposed as described by the
second decomposed dimension of DECOMP_IJ. The second dimension of array a is not
decomposed.

 50

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 real b(km,jm,im)
CSMS$DISTRIBUTE END

Here, the third dimension of array b is decomposed as described by the first decomposed
dimension of DECOMP_IJ and the second dimension of array b is decomposed as described by
the second decomposed dimension of DECOMP_IJ. The first dimension of array b is not
decomposed.

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 real c(im,2,km)
CSMS$DISTRIBUTE END

Here, the first dimension of array c is decomposed as described by the first decomposed
dimension of DECOMP_IJ. The second and third dimensions of array c are not decomposed.

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 real d(10,km)
CSMS$DISTRIBUTE END

Here, array d is not decomposed.

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 real e(jm)
CSMS$DISTRIBUTE END

Here, the single dimension of array e is decomposed as described by the second decomposed
dimension of DECOMP_IJ.

All of the above declarations could equivalently be enclosed in one DISTRIBUTE directive pair
as shown below:

CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 integer x(im,jm,km)
 real a(im,km,jm), b(km,jm,im), c(im,2,km), d(10,km), e(jm)
CSMS$DISTRIBUTE END

These simple examples obscure a few subtle features of parameters <im> and <jm> in the
DISTRIBUTE directive. We have described these parameters as "array dimensions", but they
are really somewhat more general. Consider the following code fragments:

 51

CSMS$CREATE_DECOMP(DECOMP_IJ, <nx+2, ny+2>, <0,0>)
...
CSMS$DISTRIBUTE(DECOMP_IJ, <nx>, <ny>) BEGIN
 real u(nx+2,ny+2,nz)
CSMS$DISTRIBUTE END

These DISTRIBUTE directives will correctly translate declarations of array u in a manner
analogous to the translation of array x in the previous example. However, notice that the second
parameter is <nx> instead of <nx+2> as one might suspect. The string inside the angle
brackets, nx, is really just used to identify array dimensions. This string is called a "dimension
tag". The decoupling of "dimension tag" from the exact declared array dimensions provides
some additional flexibility that minimizes the number of DISTRIBUTE directives that need to be
used.

The dimension tags can be more complicated if necessary. For example, consider the following
fragments from a program that uses dynamic memory:

[program main]

CSMS$CREATE_DECOMP(DECOMP_IJ, <nx+2, ny+2>, <0,0>)
 nxp2 = nx+2
 nyp2 = ny+2
...

[subroutine sub1]

CSMS$DISTRIBUTE(DECOMP_IJ, <nx,nxp2>, <ny,nyp2>) BEGIN
 real u(nx+2,ny+2,nz), a(nxp2,nyp2,nz)
CSMS$DISTRIBUTE END

Now the second parameter <nx,nxp2> has two tags, nx and nxp2. This indicates that array
dimensions identified by either nx or nxp2 will be decomposed as described by the first
decomposed dimension of DECOMP_IJ. Here, arrays u and a will be handled in exactly the
same way during translation. The ability to specify more than one dimension tag for each
decomposed dimension minimizes the number of DISTRIBUTE directives required in cases like
this.

3.6 More About PARALLEL

There is no run-time performance penalty for using a PARALLEL directive because processes
are not synchronized. Also, PARALLEL directives may enclose any valid Fortran executable
statements. Therefore, a program that has only one decomposition will usually require no more
than one BEGIN-END pair of PARALLEL directives for each program unit (subroutine,
function, or main program).

 52

The PARALLEL directive will translate serial loops correctly provided the upper and lower loop
bounds are valid global indices. For example, the i and j loops below would all be correctly
translated:

CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
 do 100 k=1,km
 do 200 j=3,jm-2
 do 200 i=3,im-2
 z(i,j,k) = x(i,j,k) + y(i,j,k)
 200 continue

 do 210 j=1,2
 do 210 i=1,im
 z(i,j,k) = 0
 210 continue

 do 220 j=jm-1,jm
 do 220 i=1,im
 z(i,j,k) = 0
 220 continue

 do 230 j=1,jm
 do 230 i=1,2
 z(i,j,k) = 0
 230 continue

 do 240 j=1,jm
 do 240 i=im-1,im
 z(i,j,k) = 0
 240 continue

 100 continue
CSMS$PARALLEL END

In this code fragment, notice that translated loop 210 would only be executed on processes that
contain global indices j=1 or j=2. The PARALLEL directive ensures that other processes will
skip loop 210. Similar translations will occur for the other loops.

It is useful to keep a few other caveats in mind when using the PARALLEL directive. Indices
must be used consistently to avoid incorrect translation. Sometimes, indices are used for non-
decomposed loops as well as for loops that span decomposed dimensions. This is the case in the
following fragment:

CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
 do 200 k=1,km
 do 200 j=1,jm
 do 200 i=1,im
 z(i,j,k) = x(i,j,k) + y(i,j,k)
 200 continue
 do 500 i=1,3
 call smooth(z)

 53

 500 continue
CSMS$PARALLEL END

In this case, loop 500 is used to repeatedly call subroutine smooth which performs some
computations on decomposed array z. This loop should NOT be translated because i is being
used as an iteration count, not as an index into a decomposed dimension. This is easily fixed
either by using a different loop index in loop 500, by moving the PARALLEL END directive to
exclude loop 500, or by using the IGNORE directive as shown in Section 8.

Finally, it is almost always necessary to make sure that any loops containing decomposed arrays
be enclosed inside PARALLEL directives. (A counter-example is described in the discussion of
the TO_LOCAL directive in Section 4.) During translation, PPP will generate a warning
message whenever it finds a loop that is not enclosed by PARALLEL directives if that loop
contains a decomposed array. For example, suppose that we comment out the PARALLEL
BEGIN (line 17) and PARALLEL END (line 29) directives in Example 3-1 (page 37).

C CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
...
C CSMS$PARALLEL END

Assume the new program is stored in a file named decomp_ex5.f. The "Verbose" option of
PPP, discussed in Section 11, can be used to cause warning messages to be displayed during
translation:

>> ppp --Verbose=2 --Finclude=decomp_ex1.inc decomp_ex5.f

When the erroneous code is translated, the following warning message will be printed:

"./decomp_ex5_sms.f.tmp" 24 9 WARNING: This variable, decomposed by
CSMS$DISTRIBUTE, is being used outside of a parallel region.

If the program is built and run (ignoring the warning message), the following will appear on the
screen:

>> smsRun 1 decomp_ex5_sms
 zsum = 300
>> smsRun 4 decomp_ex5_sms
 im = 15 jm = 10 km = 2
MPI: MPI_COMM_WORLD rank 1 has terminated without calling MPI_Finalize()
MPI: aborting job
< core dump >

What happened? With the PARALLEL directive removed, all loops remain un-translated and
therefore span all global indices i=1,15 and j=1,10. This was not a problem for the 1-
process run because declarations remain full-sized. However, during the 4-process run, process-
local array sizes are either (8,5,2) or (7,5,2) so the loops spanning i=1,15 and j=1,10
will go out of bounds. In the run shown above, the out of bounds writes cause a core dump.

 54

However, behavior of any Fortran program that contains an out-of-bounds indexing bug can be
very unpredictable and such bugs can be difficult to track down. It is best to use the "Verbose"
option to PPP to generate warning messages and to check the code carefully any time this PPP
warning message appears.

3.7 Arrays with Non-Unit Lower Bounds

Another issue to deal with regarding array declarations is the possibility that arrays may be
declared with lower bounds other than one. For example, consider the following variant of
Example 3-1:

[Include file: decomp_ex6.inc]

 integer im, jm, km
 common /sizes_com/ im, jm, km
CSMS$DECLARE_DECOMP(DECOMP_IJ : <0,0>)

[Source file: decomp_ex6.f]

 program decomp_ex6
 include 'decomp_ex6.inc'
 im = 15
 jm = 10
 km = 2
CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
 call compute
 end

 subroutine compute
 include 'decomp_ex6.inc'
 integer i, j, k
CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 integer z(0:im-1,0:jm-1,0:km-1), zsum
CSMS$DISTRIBUTE END
CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
 do 100 k=0,km-1
 do 100 j=0,jm-1
 do 100 i=0,im-1
 z(i,j,k) = 1
 100 continue
 zsum = 0

 do 200 k=0,km-1
 do 200 j=0,jm-1
 do 200 i=0,im-1
 zsum = zsum + z(i,j,k)
 200 continue

CSMS$PARALLEL END
CSMS$REDUCE(zsum, SUM)
 print *,'zsum = ',zsum
 return

 55

 end

In this program array z is declared so the first index (lower bound) is zero in each dimension
instead of the Fortran default of one. The bounds of loops 100 and 200 now start at zero. The
only difference between the directives in this example and those in Example 3-1 is
DECLARE_DECOMP. The new final parameter, <0,0> indicates that array declarations have
a lower bound of zero in both decomposed dimensions. The colon ":" is used as a separator in
this syntax so SMS won't confuse lower bounds with global arrays sized for a static memory
case. For example, if we had accidentally used a comma "," instead of the colon, the directive
would have looked like this:

C ERRONEOUS DIRECTIVE!
CSMS$DECLARE_DECOMP(DECOMP_IJ, <0,0>)

This would have been interpreted as a two-dimensional decomposition of statically allocated
arrays with global sizes of zero in both decomposed dimensions! A correct way to mix static
allocation and non-zero lower bounds is shown below:

CSMS$DECLARE_DECOMP(DECOMP_IJ, <im/2, jm/2> : <0,0>)

In this example, the second parameter represents local sizes (<im/2, jm/2>) and the third
parameter is lower bound values (<0,0>) for the decomposition DECOMP_IJ.

 56

4 Translating Array Indices

4.1 Translating Local Indices to Global Indices

When a loop has been translated using the PARALLEL directive, the value of the index is now
process local as illustrated in Figure 2-2 and Figure 2-3. If the intent of the program is to access
the global value, this index will need to be translated back to a global value. The TO_GLOBAL
directive is used for this purpose as illustrated in Example 4-1.

[Include file: tran_index.inc]

 1 integer im, jm
 2 common /sizes_com/ im, jm
 3 CSMS$DECLARE_DECOMP(DECOMP_IJ)

[Source file: tran_index1.f]
 1 program tran_index1
 2 implicit none
 3 include 'tran1.inc'
 4 im = 5
 5 jm = 3
 6 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <0,0>)
 7 call compute
 8 end
 9
 10 subroutine compute
 11 implicit none
 12 include 'tran1.inc'
 13 integer i, j
 14 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 15 integer x(im,jm)
 16 CSMS$DISTRIBUTE END
 17 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
 18 do 100 j=1,jm
 19 do 100 i=1,im
 20 CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN
 21 x(i,j) = (100 * i) + j
 22 CSMS$TO_GLOBAL END
 23 100 continue
 24 CSMS$SERIAL BEGIN
 25 do j = 1, jm
 26 write(*,'(16i5)') (x(i,j),i=1,im)
 27 end do
 28 CSMS$SERIAL END
 29 CSMS$PARALLEL END
 30 return
 31 end

 57

Example 4-1: An SMS parallel program that incorrectly initializes the array x inside subroutine compute.

This program initializes array x in loop 100 of subroutine compute. Each element of array x is
then printed on the screen. When the serial code is run, the following is printed on the screen:

>> tran_index1
 101 201 301 401 501
 102 202 302 402 502
 103 203 303 403 503

Since x(i,j) = (100 * i) + j, each printed element appears as a three digit integer
where the first digit is the i index, the second digit is "0", and the third digit is the j index. The
same result is seen when the SMS version is run on one process. However, the results are
incorrect when two processes are used:

>> smsRun 2 tran_index1_sms
 101 201 301 101 201
 102 202 302 102 202
 103 203 303 103 203

Why are the results incorrect? The PARALLEL directive has translated the i and j indices used
to compute x in loop 100 using local indices. However, correct operation requires that x be
initialized using global indices as in the original serial code. The solution is to use the
TO_GLOBAL directive to translate the local indices to global indices. In this case, the body of
loop 100 (line 18) would be replaced with the following code:

CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN
 x(i,j) = (100 * i) + j
CSMS$TO_GLOBAL END

The first parameter in the TO_GLOBAL directive, <1,i>, indicates that array index i is an
index in the first decomposed dimension. The second parameter, <2,j>, indicates that array
index j is an index in the second decomposed dimension. All occurrences of indices i and j
inside the TO_GLOBAL directives that are not array references will be converted to their global
equivalents in the first and second decomposed dimensions, respectively.

Note that the TO_GLOBAL does not need an SMS decomposition name when it is enclosed by
PARALLEL directives. In this case, TO_GLOBAL uses the decomposition specified by the
enclosing PARALLEL directives. Directives TO_LOCAL and GLOBAL_INDEX, introduced
later in this section, also have this feature. Running the new parallel code on various numbers of
processes will now yield the same result as the serial run. Also note that since p is decomposed,
the SERIAL directive is required to handle the print statement on line 26 as will be explained in
Section 8.1.

The TO_GLOBAL directive is also commonly used in "if" statements such as the one shown
below in loop 200:

 58

 1 subroutine compute
 2 include 'tran_index.inc'
 3 integer i, j
 4 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 5 integer x(im,jm)
 6 CSMS$DISTRIBUTE END
 7 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
 8 do 100 j=1,jm
 9 do 100 i=1,im
 10 CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN
 11 x(i,j) = (100 * i) + j
 12 CSMS$TO_GLOBAL END
 13 100 continue
 14 do 200 j=1,jm
 15 do 200 i=1,im
 16 CSMS$TO_GLOBAL(<1,i>) BEGIN
 17 if (i.gt.3) then
 18 CSMS$TO_GLOBAL END
 19 x(i,j) = 0
 20 endif
 21 200 continue
 22 call print_all(x)
 23 CSMS$PARALLEL END
 24 return

Example 4-2: A program that illustrates application of TO_GLOBAL to “if” statements.

Assume the new program is stored in a file named tran_index2.f. In the if statement on
line 17, index i is compared with global index 3. However, the enclosing PARALLEL directive
will cause i to be translated to a local index. The TO_GLOBAL directive will cause i to be
translated back to a global index for correct comparison with global index 3. The output below
shows that values of x are indeed set to zero for values of global index i greater than 3:

>> smsRun 4 tran_index2_sms
 101 201 301 0 0
 102 202 302 0 0
 103 203 303 0 0

4.2 Translating Global Indices to Local Indices Inside Loops

Sometimes, indices that have been translated to global values need to be translated back to local
values to be used as indices into decomposed arrays. The TO_LOCAL directive is used for this
translation. Consider the following code fragment that uses computed indices to avoid out-of-
bounds references:

 do 300 j=1,jm
 do 300 i=1,im
 im1 = max(1,i-1)
 ip1 = min(im,i+1)
 x(i,j) = y(i,j) - y(im1,j) - y(ip1,j)
 300 continue

 59

The max and min functions use index i in a comparison with global index values 1 and im.
Therefore, the TO_GLOBAL directive must be used (assume that the code fragment below is
enclosed by a pair of PARALLEL directives):

 do 300 j=1,jm
 do 300 i=1,im
CSMS$TO_GLOBAL(<1,i>) BEGIN
 im1 = max(1,i-1)
 ip1 = min(im,i+1)
CSMS$TO_GLOBAL END
 x(i,j) = y(i,j) - y(im1,j) - y(ip1,j)
 300 continue

The TO_GLOBAL directive will convert i-1 and i+1 to global values so ip1 and im1 will be
computed as global indices. However, ip1 and im1 are then used as indices into decomposed
array x, so they must be converted back from global to local values to avoid out-of-bounds array
references for multi-process runs. The TO_LOCAL directive is used to accomplish this as
shown below:

 do 300 j=1,jm
 do 300 i=1,im
CSMS$TO_GLOBAL(<1,i>) BEGIN
CSMS$TO_LOCAL(<1,im1,ip1>) BEGIN
 im1 = max(1,i-1)
 ip1 = min(im,i+1)
CSMS$TO_LOCAL END
CSMS$TO_GLOBAL END
 x(i,j) = y(i,j) - y(im1,j) - y(ip1,j)
 300 continue

Here, the TO_LOCAL and TO_GLOBAL directives are used in combination to accomplish both
phases of index translation. The first parameter in the TO_LOCAL directive, <1,im1,ip1>,
indicates that array indices im1 and ip1 are both used in loops that span the first decomposed
dimension. In this example, occurrences of either index in code enclosed by the TO_LOCAL
directives that are not array references will be converted to their local equivalents in the first
decomposed dimension.

Sometimes, array indices are stored for later use. If conversion to local indices can be made
before storage, then no index translation directives are required. This is the case in the following
example:

[Include file: tran_index3.inc]

 1 integer im
 2 common /sizes_com/ im
 3 CSMS$DECLARE_DECOMP(DECOMP_I)
 4
 5
[Source file: tran_index3.f]

 60

 1 program tran_index3
 2 include 'tran_index3.inc'
 3 im = 5
 4 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
 5 call compute
 6
 7
 8 subroutine compute
 9 include 'tran_index3.inc'
10 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
11 integer x(im), i, pack_num, ip
12 integer xpack(im), i_pack(im)
13 CSMS$DISTRIBUTE END
14 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
15 do 100 i=1,im
16 CSMS$TO_GLOBAL(<1,i>) BEGIN
17 x(i) = 100 * i
18 CSMS$TO_GLOBAL END
19 100 continue
20 pack_num = 0
21 do 400 i=1,im
22 if (x(i).gt.300) then
23 pack_num = pack_num + 1
24 xpack(pack_num) = x(i)
25 i_pack(pack_num) = i
26 endif
27 400 continue
28 CSMS$PARALLEL END
29 call pack_compute(xpack,pack_num)
30 do 500 ip=1,pack_num
31 x(i_pack(ip)) = xpack(ip)
32 500 continue
33 print *,'ARRAY x:'
34 CSMS$SERIAL BEGIN
35 write(*, ‘(5I5)’) (x(i), i=1,im)
36 CSMS$SERIAL END
37 return
38 end
39
40 subroutine pack_compute(xp,pnum)
41 integer pnum, xp(pnum), p
42 do 600 p=1,pnum
43 xp(p) = 0
44 600 continue
45 return
46 end

Example 4-3: This program illustrates indirect indexing. No directives are required in subroutine
pack_compute.

Here, subroutine compute initializes decomposed array x and then "packs" selected values of x
into array xpack for further processing by subroutine pack_compute. Indices of selected
values are stored in array i_pack. After the selected values of x are modified by

 61

pack_compute, they are "unpacked" back into array x. Loop 400 does the selection and
packing and loop 500 does the unpacking. The SERIAL directive will be explained in Section
8.1. When the serial code is run, the following output is printed on the screen:

>> tran_index3
 ARRAY x:
 100 200 300 0 0

In this example, the computations inside subroutine pack_compute are very simple: each packed
data point is just set to zero. Running the parallel code on different numbers of processes yields
the same results.

Subroutine pack_compute has no computational dependencies (it is "embarrassingly
parallel"). As a result, no SMS directives are required. This type of packing and unpacking is
common in NWP models, especially in physics subroutines. In fact, subroutines like
pack_compute may call many other subroutines in the same fashion, with none of them
requiring any SMS directives. It is not uncommon for large portions of a NWP model to require
no SMS directives.

Note that loop 500 need not be enclosed inside the PARALLEL directives because loop index ip
is purely local. If this code is translated using the --Verbose=2 option to PPP, the expected
warning message appears because array x is being used in a loop that is not inside a parallel
region:

"./tran_index3_sms.f.tmp" 32 25 WARNING: This variable, decomposed by
CSMS$DISTRIBUTE, is being used outside of a parallel region.

The warning message can be safely ignored in this case.

4.3 Using TO_LOCAL to Generate Processor Local Sizes and Loop Bounds

In many NWP models, large sections of code contain no dependencies that require
communications (typically model physics routines). If the array bounds and loop limits are
passed into these routines, SMS provides a means to parallelize them without inserting directives
into the code. Example 4-4 shows such a case.

 1 program AVOID_DIRECTIVES
 2 implicit none
 3 include 'tran_index.inc'
 4 im = 8
 5 jm = 6
 6 CSMS$CREATE_DECOMP(DECOMP_IJ, <im, jm>, <2,2>)
 7 call compute
 8 end
 9
 10 subroutine compute
 11 implicit none

 62

 12 include 'tran_index.inc'
 13 integer i, j
 14 integer istart, iend, jstart, jend
 15 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 16 integer x(im,jm), y(im,jm)
 17 CSMS$DISTRIBUTE END
 18
 19 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
 20
 21 do 100 j=1,jm
 22 do 100 i=1,im
 23 CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN
 24 x(i,j) = (100 * i) + j
 25 CSMS$TO_GLOBAL END
 26 100 continue
 27
 28 y = 0.0
 29
 30 istart = 1
 31 iend = im - 1
 32 jstart = 2
 33 jend = jm
 34
 35 csms$to_local(<1, im : size >, <2, jm : size >,
 36 csms$> <1, istart : lbound>, <1, iend : ubound>,
 37 csms$> <2, jstart : lbound>, <2, jend : ubound>) begin
 38 call physics(x, im, jm, istart, iend, jstart, jend, y)
 39 csms$to_local end
 40 CSMS$SERIAL BEGIN
 41 do j = 1, jm
 42 write(*,'(16i5)') (y(i,j),i=1,im)
 43 end do
 44 CSMS$SERIAL END
 45 CSMS$PARALLEL END
 46 return

47 end
 48
 49
 50
 51 subroutine physics(arr_in, dim1_size, dim2_size,
 52 & dim1_start, dim1_end,
 53 & dim2_start, dim2_end,
 54 & arr_out)
 55 integer dim1_size, dim2_size
 56 integer arr_in(dim1_size, dim2_size)
 57 integer dim1_start, dim1_end
 58 integer dim2_start, dim2_end
 59 integer arr_out(dim1_size, dim2_size)
 60
 61 integer i, j
 62 do j = dim2_start, dim2_end
 63 do i = dim1_start, dim1_end
 64 arr_out(i,j) = 2.0*arr_in(i,j)
 65 end do

 63

 66 end do
 67 return
 68 end

48

Example 4-4 Sample code that shows how TO_LOCAL can be used to pass local array bounds and start/end
loop limits to subroutines so that no directives be added to the called routines.

Program AVOID_DIRECTIVES calls subroutine physics (line 38), passing the arrays x and
y, the sizes for each dimension (im and jm) and the starting and ending loop limits (istart,
iend, jstart, jend) over which the loops in physics will span. The TO_LOCAL
directive at lines 35-37 converts the dimensions and loop limits to their process local values. The
syntax

<1, im : size>

causes PPP to replace references to im with the process local size for the first decomposed
dimension, (where the size includes the number of halo points). For a static memory model, the
size would be the local size declared in the DECLARE_DECOMP directive. The syntax

<1, istart : lbound>

causes PPP to replaced instances of istart with the local index of the first interior point for
the first decomposed dimension for the given process. Figure 4-1 shows all the sizes and bounds
for this case, assuming the program is run on 4 processes.

The result is that, inside subroutine physics, the dim1_size, dim2_size, dim1_start,
dim1_end, dim2_start, and dim2_end all have the correct process local values.
Consequently, subroutine physics produces the right answer for any process decomposition,
even though it contains no SMS directives.

 64

 Processor Decomposed Size Lbound Ubound
 dimension

 P1 1 6 1 4
 P1 2 5 1 3
 P2 1 6 3 6
 P2 2 5 1 3
 P3 1 6 1 4
 P3 2 5 3 5
 P4 1 6 3 6
 P4 2 5 3 5

1

2

3

4

5

2

3

4

5

 6

3 6 5 4 6 1 2 1 3 4 5 2

1

2

3

4

5

1

2

3

4

5

6 1 3 4 5 2

“Local” indices
“Global” indices

8 3 5 6 7 4

P1 P2

P3 P4

Figure 4-1 Process layout, local sizes, lower bounds and upper bounds for a 4 process run of Example 4-4.

 65

4.4 Global-to-Local Index Translation with Restricted Execution

The form of the TO_LOCAL directive described above should always be used in combination
with a TO_GLOBAL directive. Otherwise, there will be no assurance that the global index being
translated actually belongs on a process. For example, consider the following code fragment that
is enclosed in a PARALLEL directive but is not inside a loop:

 id = 5
 jd = 4
 x(id,jd) = 10

The following use of TO_LOCAL would be incorrect:

CSMS$TO_LOCAL(<1,id>,<2,jd>) BEGIN
 id = 5
 jd = 4
CSMS$TO_LOCAL END
 x(id,jd) = 10

The translation of id and jd from global values to process-local values will work fine on the
process that "owns" global point (5,4). However, the translation will be erroneous on
processes that do not own global point (5,4) because there is no valid local equivalent of these
global coordinates on those processes. In order to restrict the execution of these statements to the
process that owns the data, the GLOBAL_INDEX directive must be used as shown below:

 id = 5
 jd = 4
CSMS$GLOBAL_INDEX(1,2) BEGIN
 x(id,jd) = 10
CSMS$GLOBAL_INDEX END

The GLOBAL_INDEX directives perform the correct index translations AND ensure that the
enclosed code is only executed on the process that owns global point (5,4). In this case, the
first parameter in the directive, 1, indicates that all array indices corresponding to the first
decomposed dimension will be translated to their local equivalents. The second parameter, 2,
indicates that all array indices corresponding to the second decomposed dimension will be
translated to their local equivalents. In addition, execution of the enclosed assignment statement
will only be permitted on the process that contains global point (id,jd).

Consider the following example that initializes the boundaries of an array that is decomposed in
two dimensions:

 1 subroutine compute
 2 include 'tran_index5.inc'
 3 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 4 integer x(im,jm)
 5 CSMS$DISTRIBUTE END

 66

 6 integer i, j
 7 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
 8 do 100 j=1,jm
 9 do 100 i=1,im
10 CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN
11 x(i,j) = (100 * i) + j
12 CSMS$TO_GLOBAL END
13 100 continue
14 do 110 j=2,jm-1
15 CSMS$GLOBAL_INDEX(1) BEGIN
16 x(1,j) = 0
17 x(im,j) = 0
18 CSMS$GLOBAL_INDEX END
19 110 continue
20 do 120 i=2,im-1
21 CSMS$GLOBAL_INDEX(2) BEGIN
22 x(i, 1) = 0
23 x(i,jm) = 0
24 CSMS$GLOBAL_INDEX END
25 120 continue
26 CSMS$GLOBAL_INDEX(1,2) BEGIN
27 x(1, 1) = 0
28 x(im, 1) = 0
29 x(1,jm) = 0
30 x(im,jm) = 0
31 CSMS$GLOBAL_INDEX END
32 print *,'ARRAY x:'
33 call print_all(x)
34 CSMS$PARALLEL END
35 return
36 end

Example 4-5: An SMS program that illustrates the use of the GLOBAL_INDEX directive to initialize
boundaries.

This program initializes array x as in previous examples. It then proceeds to set the boundary
values of x to zero in lines 14 through 30. Assume the new program is stored in a file named
tran_index5.f. When the serial code is run, the following is printed on the screen:

>> tran_index5
 ARRAY x:
 0 0 0 0 0
 0 202 302 402 0
 0 0 0 0 0

Three pairs of GLOBAL_INDEX directives handle the necessary translations. The first pair
deals with global indices 1 and im in loop 110 while the second pair deals with global indices 1
and jm in loop 120. The third pair handles global indices in the four assignment statements on
lines 27 through 30. In each case, indices are translated and execution of each enclosed
statement is permitted only on appropriate processes. When this program is run on multiple
processes, the expected results are printed on the screen.

 67

 68

5 Handling Adjacent Dependencies

5.1 Further Details on EXCHANGE

In Section 2.5, we saw how the EXCHANGE directive was used to implement communications
needed to resolve adjacent dependencies for a dynamic memory, one dimensional decomposition
case where the halo regions required were of width 1. In this sub-section, we expand on that
discussion by examining the treatment of two-dimensional decompositions, larger stencils, and
by discussing other miscellaneous details about EXCHANGE.

5.1.1 Using EXCHANGE in the Case of Two-Dimensional Decompositions

We begin by modifying the Laplace Example 2-5 introduced in Section 2.5 so that a two
dimensional decomposition is used. Two dimensional data decompositions allow parallel
programs to scale to a large number of processes.

 1 program basic_ex_2d_decomp
 2 include 'basic.inc'
 3 im = 10
 4 jm = 10
 5 CSMS$CREATE_DECOMP(DECOMP_I, <im,jm>, <1,1>)
 6 call laplace
 7 end
 8
 9 subroutine laplace
 10 include 'basic.inc'
 11 integer i, j, iter
 12 real max_error
 13 real tolerance
 14 parameter (tolerance = 0.001)
 15 CSMS$DISTRIBUTE(DECOMP_I, <im>, <jm>) BEGIN
 16 real f(im,jm), df(im,jm)
 17 CSMS$DISTRIBUTE END
 18 CSMS$PARALLEL(DECOMP_I,<i>, <j>) BEGIN
 19 do 100 j=1,jm
 20 do 100 i=1,im
 21 f(i,j) = 0.0
 22 100 continue
 23 do 110 j=1,jm
 24 CSMS$GLOBAL_INDEX(1) BEGIN
 25 f(1,j) = 2.0
 26 f(im,j) = 2.0
 27 CSMS$GLOBAL_INDEX END
 28 110 continue
 29 do 120 i=1,im
 30 CSMS$GLOBAL_INDEX(2) BEGIN

 69

 31 f(i, 1) = 2.0
 32 f(i,jm) = 2.0
 33 CSMS$GLOBAL_INDEX END
 34 120 continue
 35 iter = 0
 36 max_error = 2.0 * tolerance
 37 C main iteration loop...
 38 do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))
 39 iter = iter + 1
 40 max_error = 0.0
 41 CSMS$EXCHANGE(f)
 42 do 200 j=2,jm-1
 43 do 200 i=2,im-1
 44 df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
 45 & - f(i,j)
 46 200 continue
 47 do 300 j=2,jm-1
 48 do 300 i=2,im-1
 49 if (max_error .lt. abs(df(i,j))) then
 50 max_error = abs(df(i,j))
 51 endif
 52 300 continue
 53 CSMS$REDUCE(max_error, MAX)
 54 do 400 j=2,jm-1
 55 do 400 i=2,im-1
 56 f(i,j) = f(i,j) + df(i,j)
 57 400 continue
 58 enddo
 59
 60 CSMS$PARALLEL END
 61 print *, 'Solution required ',iter,' iterations'
 62 print *, 'Final error = ', max_error
 63
 64 return
 65 end

Example 5-1 Two-dimensional decomposition version of Example 2-5.

The CREATE_DECOMP directive now lists two decomposed dimension (with global sizes im
and jm). The halo width for each dimension is 1 in this case. As discussed in Section 3.2, the
DISTRIBUTE, PARALLEL, and GLOBAL_INDEX directives are modified to handle the 2-D
decompositions. Although the communication patterns required to support 2-dimensional
decompositions are more complex than the 1-dimensional case, SMS hides all of these details.
Thus, the EXCHANGE directive is unchanged. Figure 5-1 shows some sample stencils overlaid
on a 3x3 processor decomposition of the problem. The halo regions are the shaded areas. The
white boxes are referred to as the "interior" of each process's sub-domain. The stencil centered
at global coordinate (3,2) only requires P1 communicate with P2. However, the stencil
centered at global coordinate (4,4) requires P5 communicate with both P2 and P4. Figure 5-2
and Figure 5-3 show the full communications pattern for a 2-D exchange. Notice that the corner
halo points of the center process are filled with data from the corresponding corner processes in
the drawing.

 70

Global
Indices

1
2
3

4
5

6

7

8

9

10

1 3 2 4 6 7 5 4 3 8 8 9 10 7

“HALO” REGIONS

P1 P2 P3

P4 P5 P6

P7 P8 P9

Figure 5-1 Sample stencils overlaid on a 3x3 process decomposition for the Laplace problem. The halo
regions are the shaded areas. The white boxes are referred to as the "interior" of each process's sub-domain.

 71

Figure 5-2 Schematic of how data are distributed among 9 processes just prior to an exchange operation. The
big boxes contain the data. The boxes on the edges are the halo regions.

P1 P2

P4

P7 P8

P3

P6

P9

P5

BEFORE EXCHANGE

 72

Figure 5-3 Illustration of the data distribution just after a 2 dimensional exchange. The halo regions in
Figure 5-2 have been filled with the data from the corresponding neighboring processes.

The obvious cases when 2-D decompositions are required occur for problems having fewer
points in a decomposed dimension than there are processors available. For instance, Example
2-5 (page 32) could run on at most 10 processes because the size of the decomposed dimension
is 10. Another, more subtle, issue is that adjacent communication only scales when 2-D process
layouts are used. Figure 5-4, Figure 5-5, Figure 5-6, and Figure 5-7 show why this is the case for
exchanges made on a size 16x16 array.

P1 P2

P4

P7 P8

P3

P6

P9

P5

AFTER EXCHANGE

 73

P3

P4

P1

P2

16

16

16

16

1x4 Process Layout : 32 Points Sent By Each Process

Figure 5-4 Schematic of the number of data points sent by each process during an exchange for a 1x4 process
layout. In this case, each process sends 16 data points in each of 2 directions for a total of 32. In this figure
and the three that following, edge processes include halo regions on both sides for illustration purposes even
though SMS does not currently support periodic boundary conditions.

 74

 1x16 Process Layout : 32 Points Sent By Each Process

16

.

.

.

.

16

16

16

Figure 5-5 Schematic of the number of data points sent by each process during an exchange for a 1x16
process layout. In this case, each process sends 16 data points in each of 2 directions for a total of 32.

 75

8

8

2x2 Process Layout : 32 Points Sent By Each Process

8

8

Figure 5-6 Schematic of the number of data points sent by each process during an exchange for a 2x2 process
layout. In this case, each process sends 8 data points in each of 4 directions for a total of 32.

 76

4x4 Process Layout : 16 Points Sent By Each Process

4

4

4
4

4

Figure 5-7 Schematic of the number of data points sent by each process during an exchange for a 4x4 process
layout. In this case, each process sends 4 data points in each of 4 directions for a total of 16.

 77

If only one dimension is decomposed, the number of data points exchanged between neighbors
remains constant when the number of processes increases from 4 to 16 (and beyond) (Figure 5-4
and Figure 5-5). However, if a 2-D decomposition is implemented then when the process layout
is changed from 2x2 (4 total) to 4x4 (16 total), the number of data points exchanged is halved
(Figure 5-6 and Figure 5-7). The general rule is that if square process layouts are used, the
number of data points communicated scales as Np1 , where Np is the number of processes.
As seen in Section 3.3.1, SMS tries to make the process layouts as close to square as possible.

5.1.2 Larger Stencils

As illustrated in Figure 2-14, the widths of the stencil for the calculation of df in the laplace
program is one point in each direction. Since this is the only computation in Laplace requiring
"exchange", it is clear that the halo widths specified in CREATE_DECOMP must be 1 in the i
and j dimensions. However, suppose we modify Example 2-4 as shown in Example 5-2 below.

 1 program basic_ex_halo2
 2 include 'basic.inc'
 3 im = 10
 4 jm = 10
 5 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <2>)
 6 call laplace
 7 end
 8
 9 subroutine laplace
 10 include 'basic.inc'
 11 integer i, j, iter
 12 real max_error
 13 real tolerance
 14 parameter (tolerance = 0.001)
 15 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
 16 real f(im,jm), df(im,jm)
 17 CSMS$DISTRIBUTE END
 18 CSMS$PARALLEL(DECOMP_I,<i>) BEGIN
 19 do 100 j=1,jm
 20 do 100 i=1,im
 21 f (i,j) = 0.0
 22 df(i,j) = 0.0
 23 100 continue
 24 do 110 j=1,jm
 25 CSMS$GLOBAL_INDEX(1) BEGIN
 26 f(1,j) = 2.0
 27 f(im,j) = 2.0
 28 CSMS$GLOBAL_INDEX END
 29 110 continue
 30 do 120 i=1,im
 31 f(i, 1) = 2.0
 32 f(i,jm) = 2.0
 33 120 continue
 34 iter = 0
 35 max_error = 2.0 * tolerance

 78

 36 C main iteration loop...
 37 do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))
 38 iter = iter + 1
 39 max_error = 0.0
 40 CSMS$EXCHANGE(f)
 41 do 200 j=2,jm-1
 42 do 200 i=2,im-1
 43 df(i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
 44 & - f(i,j)
 45 200 continue
 46 do 300 j=2,jm-1
 47 do 300 i=2,im-1
 48 if (max_error .lt. abs(df(i,j))) then
 49 max_error = abs(df(i,j))
 50 endif
 51 300 continue
 52 CSMS$REDUCE(max_error, MAX)
 53 do 400 j=2,jm-1
 54 do 400 i=2,im-1
 55 f(i,j) = f(i,j) + df(i,j)
 56 400 continue
 57 enddo
 58
 59 CSMS$EXCHANGE(df)
 60 do j = 1, jm
 61 do i = 3, im-2
 62 f(i,j) = f(i,j) + 2.0*df(i,j) - df(i-2,j) - df(i+2,j)
 63 end do
 64 end do
 65
 66 CSMS$PARALLEL END
 67 print *, 'Solution required ',iter,' iterations'
 68 print *, 'Final error = ', max_error
 69
 70 end

Example 5-2 Modified version of Example 2-5 with additional code that has a stencil width of 2 in the i
direction.

For the calculations starting at line 60, the width of the stencil is 2 in the i direction and 1 in the
j direction as shown in Figure 5-8.

 79

 df2(i,j) = 2.0*df(i,j) - df(i-2,j) - df(i+2,j)

df(i+2,j) df(i-2,j)

New Stencil
Point

New Stencil
Point

Figure 5-8 Modified stencil for additional calculations in Example 5-2. This time the stencil width is 2 in the
i direction.

The exchanges of the size 2 halo regions are aggregated to reduce latency as shown in Figure
5-9.

 80

P1 P2

Figure 5-9 A illustration showing how data points from two-point thick halo regions are combined into a
single message that is sent to the neighboring process in order to reduce latency.

This program now has 2 calculations involving the same dimension of the same decomposition
with different stencil widths. SMS handles this by requiring the programmer to make the halo
width of the decomposition equal to the larger of the two widths. It is up to the programmer to
determine the width of the largest stencil required by each dimension of every decomposition.
The CREATE_DECOMP directive (line 5), of Example 5-2 (page 78) shows the correct halo
width specification (<2>).

Choosing a single halo width could mean some data are communicated unnecessarily. The
exchange at line 40 (Example 5-2) is an example of such inefficiency. The stencil of the
computations in loop 200 is still one wide in the i direction. However, since the halo width of f
is now 2 in this dimension, one extra halo point on each side for each j will be communicated
unnecessarily. This extra communication can be eliminated by using a variant of the
EXCHANGE directive that only exchanges part of the halo region:

CSMS$EXCHANGE(f<1:1>)

 81

This option to EXCHANGE tells SMS to exchange only the first halo point in the upper and
lower halo regions.

If we were to modify Example 5-2 to use a two dimensional decomposition, the
CREATE_DECOMP directive would look as follows:

CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <2,1>)

Now, the maximum stencil width is 2 in the first decomposed dimension and 1 in the second
decomposed dimension.

5.1.3 Miscellaneous

For exchanges using static memory models the process-local array sizes specified in the
DECLARE_DECOMP directive must be large enough to include the halo regions. In the
program fragment below, the halo size is one. Since there is a halo region on each side, the
declared local array size is the global size (im) divided by the number of processes (4) plus 2 to
accommodate the halo regions and plus 1 since 4 does not divide 30 evenly.

 program STATIC_MEMORY_EXCHANGE
 implicit none
 integer im
 parameter(im = 30)
 integer jm
 parameter(jm = 5)
CSMS$DECLARE_DECOMP(my_dh, <im/4 + 2 + 1>)

A second point about EXCHANGE is that, for both static and dynamic memory models, the
number of processes used must be small enough to ensure the size of the interior is greater than
the halo width in each decomposed dimension.

Finally, we point out that EXCHANGE automatically implements the synchronization required
for the parallel code to produce the correct answer. A process scheduled to receive data from a
neighbor will wait until the data have fully arrived before proceeding with the next set of
calculations.

5.2 Optimizations

In this section, some optimizations are described that can be employed to reduce the number of
exchanges and the amount of data exchanged in a parallel SMS program.

 82

5.2.1 Aggregating Exchanges

The program SLOW below, uses a statically declared one dimensional decomposition (line 10)
to distribute the arrays a, b and c which contain adjacent dependencies (lines 44, 45, 52). In this
example, a halo thickness of one is defined by CREATE_DECOMP (line 24). After a series of
iterations (line 39) a global sum is produced with the REDUCE directive (line 63).

 1 program SLOW
 2 implicit none
 3 integer im
 4 parameter(im = 30)
 5 integer jm
 6 parameter(jm = 5)
 7 integer iterations
 8 parameter(iterations = 3)
 9
 10 CSMS$DECLARE_DECOMP(my_dh, <im/3 + 2>)
 11
 12 CSMS$DISTRIBUTE(my_dh, <im>) BEGIN
 13 real a(im)
 14 real b(im,jm)
 15 real c(im,jm)
 16 CSMS$DISTRIBUTE END
 17
 18 real ysum
 19
 20 integer i
 21 integer j
 22 integer iter
 23
 24 CSMS$CREATE_DECOMP(my_dh, <im>, <1>)
 25
 26 ysum = 0.0
 27 b = 0.0
 28 c = 0.0
 29
 30 do j = 1, jm
 31
 32 CSMS$PARALLEL(my_dh, <i>) BEGIN
 33 do i = 1, im
 34 CSMS$TO_GLOBAL(<1, i>) BEGIN
 35 a(i) = real(3*i + 2 + j)
 36 CSMS$TO_GLOBAL END
 37 end do
 38
 39 do iter = 1, iterations
 40
 41 CSMS$EXCHANGE(a)
 42
 43 do i = 2, im-1
 44 b(i,j) = a(i+1) + a(i-1)
 45 c(i,j) = b(i,j) + c(i,j)
 46 end do

 83

 47
 48 CSMS$EXCHANGE(b)
 49 CSMS$EXCHANGE(c)
 50
 51 do i = 2, im-1
 52 a(i) = b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)
 53 end do
 54
 55 end do
 56
 57 do i = 2, im - 1
 58 ysum = ysum + a(i)
 59 end do
 60
 61 end do
 62
 63 CSMS$REDUCE(ysum, SUM)
 64
 65 print *, 'ysum is ', ysum
 66 CSMS$PARALLEL END
 67 end

Example 5-3 A sub-optimal version of a program parallelized using SMS.

SMS provides the capability to aggregate the exchanges of multiple variables. If lines 48-49 are
replaced with

CSMS$EXCHANGE(b,c)

then SMS will combine the communications of the corresponding halo regions of b and c as
shown in Figure 5-10. Since the number of messages sent is halved, performance on high-
latency machines will improve.

 84

 P P

Var 2

Var 1

Figure 5-10 An illustration of how communications are aggregated to reduce latency for a portion of the
exchange of Var 1 and Var 2. The last column of process P1’s variables are communicated as a single
message to P2 where they are unpacked into the corresponding halo regions.

5.2.2 Trading Communications for Computations Using HALO_COMP

Example 5-3 can be further optimized by trading communication for redundant computations in
the halo region as briefly discussed in the SMS overview paper. This is done using the
HALO_COMP directive to modify the ranges of parallel loops to include computations in the
halo regions. These extra computations can eliminate the need for some exchanges.

Figure 5-11, Figure 5-12, and Figure 5-13 illustrate how redundant computations work. Without
the HALO_COMP directive, b and c are only computed in interior points using stencils like
that shown in Figure 5-11.

 85

“b”, “c” stencils

P1 P2 P3

“Global” 1 32 4 6 7543 8 976

1

2

3

Figure 5-11 Memory layout of “a” (assuming im=9, jm=3) with sample stencil for calculations of “b” and “c”
overlaid.

P1 P2 P3

Global
1 32 6 75 8 976

1

2

3

“a” stencil

Figure 5-12 Memory layout of “b” and “c” with sample stencil for calculation of “a” overlaid. The halo
regions of “b” and “c” must be updated via exchange for the calculation of “a” to be executed correctly.

Halo regions of b and c must then be updated via an exchange for a to be properly computed as
shown in Figure 5-12. A computation one step into the halo region (Figure 5-13) requires that a
have a halo size of two instead of one. Since process P1 now computes points such as b(4,2)
and c(4,2), the computation of a(3,2) shown in Figure 5-12 can proceed without having
exchanged b and c. However, extra computations must be done since process P2 must also
perform exactly the same computation for its corresponding points b(4,2) and c(4,2),

 86

In this example, the number of exchanges AND the amount of data communicated have been
reduced. The amount of data communicated is less because the benefit of not exchanging both b
and c is only partially offset by the fact that the amount of data communicated in the exchange
of a has doubled.

P1 P2 P3

Global
1 3 2 4 5 6 7 5 4 3 2 8 8 9 7 6 5

1

2

3

“b”, “c” stencils
centered in the halo region

Updated halo
region

Figure 5-13 Modified memory layout of “a” with new sample stencil centered in the halo region. The
computation of point b(4,2) and c(4,2) effectively updates the halo regions of “b” and “c” so that the
computation of “a” in Figure 5-12 can be made without an exchange.

A net improvement in performance by this technique will only be realized if the cost of the
additional computation by each process is less than the cost of exchanging b and c. Whether or
not the code runs faster will, in general, depend on the communication patterns in the program,
the number of processes used, and the target hardware platform. Since adjacent communication
does not scale linearly, improved performance will more likely be achieved for a large number of
processes on machines where the ratio of communications speed to processor speed is low.

A version of Example 5-3 that implements redundant calculations is shown in Example 5-4. The
HALO_COMP directive on line 43 tells SMS that the enclosed loop should be executed 1 step
into the halo region in each direction. This updates b and c sufficiently to satisfy the
dependencies in the loop at lines 52-54. DECLARE_DECOMP and CREATE_DECOMP have
been modified to accommodate the new halo size of 2. The exchanges of b and c have been
eliminated.

 87

 1 program FASTER
 2 implicit none
 3 integer im
 4 parameter(im = 30)
 5 integer jm
 6 parameter(jm = 5)
 7 integer iterations
 8 parameter(iterations = 3)
 9
 10 CSMS$DECLARE_DECOMP(my_dh, <im/3 + 4>)
 11
 12 CSMS$DISTRIBUTE(my_dh, <im>) BEGIN
 13 real a(im)
 14 real b(im,jm)
 15 real c(im,jm)
 16 CSMS$DISTRIBUTE END
 17
 18 real ysum
 19
 20 integer i
 21 integer j
 22 integer iter
 23
 24 CSMS$CREATE_DECOMP(my_dh, <im>, <2>)
 25
 26 ysum = 0.0
 27 b = 0.0
 28 c = 0.0
 29
 30 do j = 1, jm
 31
 32 CSMS$PARALLEL(my_dh, <i>) BEGIN
 33 do i = 1, im
 34 CSMS$TO_GLOBAL(<1, i>) BEGIN
 35 a(i) = real(3*i + 2 + j)
 36 CSMS$TO_GLOBAL END
 37 end do
 38
 39 do iter = 1, iterations
 40
 41 CSMS$EXCHANGE(a)
 42
 43 CSMS$HALO_COMP(<1,1>) BEGIN
 44 do i = 2, im-1
 45 b(i,j) = a(i+1) + a(i-1)
 46 c(i,j) = b(i,j) + c(i,j)
 47 end do
 48 CSMS$HALO_COMP END
 49
 50
 51
 52 do i = 2, im-1
 53 a(i) = b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)
 54 end do

 88

 55
 56 end do
 57
 58 do i = 2, im - 1
 59 ysum = ysum + a(i)
 60 end do
 61
 62 end do
 63
 64 CSMS$REDUCE(ysum, SUM)
 65
 66 print *, 'ysum is ', ysum
 67
 68 CSMS$PARALLEL END
 69
 70 end

Example 5-4 A version of Example 5-3 that has been optimized by trading communications for redundant
calculations in the halo region.

5.2.3 Pulling Exchanges Outside of Loops

Program FASTER is still inefficient on high-latency machines because the exchange of a (line
42) occurs inside the j loop. To reduce the number of exchanges (thus improving performance)
the exchange is moved outside the j loop. This requires promoting a from a one dimension a
two-dimensional array (line 13) and creating a second j loop (line 44) as shown in Example 5-5.

 1 program FASTEST
 2 implicit none
 3 integer im
 4 parameter(im = 30)
 5 integer jm
 6 parameter(jm = 5)
 7 integer iterations
 8 parameter(iterations = 3)
 9
 10 CSMS$DECLARE_DECOMP(my_dh, <im/3 + 4>)
 11
 12 CSMS$DISTRIBUTE(my_dh, <im>) BEGIN
 13 real a(im,jm)
 14 real b(im,jm)
 15 real c(im,jm)
 16 CSMS$DISTRIBUTE END
 17
 18 real ysum
 19
 20 integer i
 21 integer j
 22 integer iter
 23
 24 CSMS$CREATE_DECOMP(my_dh, <im>, <2>)
 25
 26 ysum = 0.0

 89

 27 b = 0.0
 28 c = 0.0
 29
 30 do j = 1, jm
 31
 32 CSMS$PARALLEL(my_dh, <i>) BEGIN
 33 do i = 1, im
 34 CSMS$TO_GLOBAL(<1, i>) BEGIN
 35 a(i,j) = real(3*i + 2 + j)
 36 CSMS$TO_GLOBAL END
 37 end do
 38 end do
 39
 40 do iter = 1, iterations
 41
 42 CSMS$EXCHANGE(a)
 43
 44 do j = 1, jm
 45
 46 CSMS$HALO_COMP(<1,1>) BEGIN
 47 do i = 2, im-1
 48 b(i,j) = a(i+1,j) + a(i-1,j)
 49 c(i,j) = b(i ,j) + c(i ,j)
 50 end do
 51 CSMS$HALO_COMP END
 52
 53 do i = 2, im-1
 54 a(i,j) = b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)
 55 end do
 56 end do
 57
 58 end do
 59
 60 do j = 1, jm
 61 do i = 2, im - 1
 62 ysum = ysum + a(i,j)
 63 end do
 64
 65 end do
 66
 67 CSMS$REDUCE(ysum, SUM)
 68
 69 print *, 'ysum is ', ysum
 70
 71 CSMS$PARALLEL END
 72
 73 end

Example 5-5 A version of Example 5-3 that has been further optimized by modifying some of the serial code.
Array a has been promoted to two dimensions to allow the exchange to be placed outside of the j loop.

The amount of data communicated by each process (roughly 2*jm*iterations) is unchanged.
However, the number of communications is reduced from 2*jm*iterations to 2*iterations. The
performance gain from this optimization can be quite dramatic on high latency machines. The

 90

drawbacks of the optimization in this particular case are the increased memory usage (caused by
the promotion of a) and the slightly increased code complexity.

5.2.4 Using HALO_COMP and TO_LOCAL To Make Subroutines Do Redundant
Computations

We saw in Section 4.3 how the TO_LOCAL directive can be used to parallelize subroutines
without requiring directives inside the subroutine code. The approach works by making the
subroutines operate on the interior of the process local arrays. Now, suppose we want those
called routines to do redundant computations in the halo region to avoid communication.
Example 5-6 shows a modified version of subroutine compute from Example 4-4, illustrating
how this is done.

 1 subroutine compute
 2 implicit none
 3 include 'tran_index.inc'
 4 integer i, j
 5 integer istart, iend, jstart, jend
 6 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 7 integer x(im,jm), y(im,jm)
 8 CSMS$DISTRIBUTE END
 9
 10 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
 11
 12 csms$halo_comp(<1,1>, <1,1>) begin
 13 do 100 j=1,jm
 14 do 100 i=1,im
 15 CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN
 16 x(i,j) = (100 * i) + j
 17 CSMS$TO_GLOBAL END
 18 100 continue
 19 csms$halo_comp end
 20
 21 y = 0.0
 22
 23 istart = 1
 24 iend = im - 1
 25 jstart = 2
 26 jend = jm
 27
 28 csms$to_local(<1, im : size >, <2, jm : size >,
 29 csms$> <1, istart : lbound>, <1, iend : ubound>,
 30 csms$> <2, jstart : lbound>, <2, jend : ubound>) begin
 31
 32 csms$halo_comp(<1,1>, <1,1>) begin
 33
 34 call physics(x, im, jm, istart, iend, jstart, jend, y)
 35
 36 csms$halo_comp end
 37

 91

 38 csms$to_local end
 39
 40 do j = 2, jm
 41 do i = 1, im - 1
 42 x(i,j) = y(i,j) + y(i+1,j-1)
 43 end do
 44 end do
 45
 46 CSMS$SERIAL BEGIN
 47 do j = 1, jm
 48 write(*,'(16i5)') (x(i,j),i=1,im)
 49 end do
 50 CSMS$SERIAL END
 51
 52 CSMS$PARALLEL END
 53 return

54 end

Example 5-6 Modified version of Example 4-4 that passes lower and upper bounds into subroutine
physics so that it does redundant computations for one point in the halo region for each dimension and
for each direction.

Since the call to physics is now contained within both a TO_LOCAL and HALO_COMP
directive, the effect is to change the lower and upper bounds passed to the subroutine so that it
will do redundant computations for one point in the halo region for each direction, for each
decomposed dimension. Figure 5-14 shows the new table of lower and upper bounds (compare
to the table in Figure 4-1). Now, following the call to physics, variable y contains valid data
one point into the halo region. Consequently, the loop at lines 40-44 produces the correct
answer.

 Processor Decomposed Size Lbound Ubound
 dimension

 P1 1 6 1 5
 P1 2 5 1 4
 P2 1 6 2 6
 P2 2 5 1 4
 P3 1 6 1 5
 P3 2 5 2 5
 P4 1 6 2 6
 P4 2 5 2 5

Figure 5-14 Table of sizes, lower bounds and upper bounds for Example 5-6. Compare the lower bounds and
upper bounds to the values in the table in Figure 4-1. The sizes are unchanged.

 92

5.3 Debugging Adjacent Dependencies: CHECK_HALO

The analysis of adjacent dependencies in a serial code and the process of accurately placing
EXCHANGE and HALO_COMP directives are highly prone to error. To help the user track
down such errors, the CHECK_HALO directive and associated SMS_CHECK_HALO
environment variable can be used to check if all or part of a halo variable is up-to-date. Suppose,
in Example 5-4, the user forgot to include the HALO_COMP directives on lines 43 and 48.
When the program is run, it does not produce the correct answer for ysum. The user can observe
that the loop on lines 52-54 requires one point of the lower and upper halo regions of b and c up-
to-date. To check this assumption, the following directive can be added at line 51:

CSMS$CHECK_HALO(b<1:1>, c<1:1>, 'LOOP 52')

If the SMS_CHECK_HALO is set to "ON", the generated code checks if the afore-mentioned
halo points are up-to-date. In this case, since the halo regions are not up-to-date, the SMS
program will generate the following error message and terminate:

LOOP 52 Halo check failed for var : b

Suppose the HALO_COMP directives are included as shown on lines 43 and 48. This time the
check passes so no error messages are generated and the program continues. Suppose the user
includes the HALO_COMP directives on lines 43 and 48 and specifies the CHECK_HALO
directive as follows:

CSMS$CHECK_HALO(b, c, 'LOOP 52')

This form of the directive tells SMS to check the entire halo region. Since, for the lower and
upper halo regions, only one of the halo points are up-to-date, the program will terminate with
the same error message.

The directive can be added to the code on a permanent basis. When SMS_CHECK_HALO is
“ON”, CHECK_HALO adds costly communication. However, if the SMS_CHECK_HALO
environment variable is set to something other than "ON" then the halo checks are skipped;
maximizing performance. If, after a code change, the program generates the wrong answer, the
halo checks can be turned back on to help isolate the problem.

 93

6 Handling Complex Dependencies using TRANSFER

Section 2.7 introduced the TRANSFER directive and explained how it could be used to handle
complex dependencies in more than one dimension. In Section 6.1, we show how TRANSFER
can be used when either the source or destination array are non-decomposed. In Section 6.2, we
examine how TRANSFER can be applied to the parallelization of spectral NWP models.

6.1 Further Details about TRANSFER

While TRANSFER can be used to generate communications to transpose two arrays decomposed
in one or more dimensions, it can also be used when either the source or destination arrays are
not decomposed. If the destination array is not decomposed but the source is then the
TRANSFER directive effectively implements a “gather” of the source into the destination as
shown in Figure 6-1. After the transfer, the entire array is replicated on each process. Since the
local data for each process must be communicated to all other processes, this operation can be
quite expensive.

“source”

“source”

“destination”

“destination”

Figure 6-1 Schematic of the behavior of TRANSFER when the source array is decomposed and the
destination array is NOT decomposed. The effect is to “gather” the process-local data from the source array
into the globally sized destination array.

If the source array is not decomposed but the destination array is decomposed then TRANSFER
performs an "extract" of data from the source into the destination as shown in Figure 6-2. Note
that no communication is needed in this case since each process has access to all needed data to
begin with.

 94

“source” “destination”

“source” “destination”

Figure 6-2 Schematic of the behavior of TRANSFER when the source array is NOT decomposed and the
destination array is decomposed. The effect is to “extract” the appropriate data from the globally sized
source array into the process-local destination array.

As in the case of EXCHANGE, TRANSFERs can be aggregated as follows to reduce latency:

CSMS$TRANSFER(<source1, destination1>, <source2, destination2>) BEGIN

 Serial code here

CSMS$TRANSFER END

Some dependencies make decomposition in any dimension difficult. The program in Example
6-1 below shows how TRANSFER can be used to avoid parallelization of such code. The idea is
to use TRANSFER to gather the data into global arrays (line 28), execute the complex code on
the global data (line 35), and then extract from the global data the correct process-local pieces
(line 38).

 1 program TRANSFER2
 2 implicit none
 3
 4 integer im
 5 parameter(im=60)
 6
 7 integer jm
 8 parameter(jm=90)
 9
 10 integer km
 11 parameter(km=5)
 12

 95

 13 CSMS$DECLARE_DECOMP(DECOMP_IJ, <im/2, jm/2>)
 14
 15 CSMS$DISTRIBUTE(DECOMP_IJ, im) BEGIN
 16 real u(km, im,jm)
 17 CSMS$DISTRIBUTE END
 18
 19 CSMS$INSERT real u_global(km,im,jm)
 20
 21 C BEGIN
 22
 23 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>)
 24
 25 call manageable_dependencies(u)
 26
 27 C This is a "gather".
 28 CSMS$TRANSFER(<u, u_global>)
 29
 30 C parallelize later, maybe
 31 CSMS$REMOVE BEGIN
 32 call nasty_dependencies(u)
 33 CSMS$REMOVE END
 34
 35 CSMS$INSERT call nasty_dependencies(u_global)
 36
 37 C This is an "extract".
 38 CSMS$TRANSFER(<u_global, u>)
 39
 40 call more_manageable_dependencies(u)
 41
 42 end

Example 6-1 Example of how TRANSFER can be used to avoid parallelization of code containing complex
dependencies.

Notice this variation of the TRANSFER syntax does not have a BEGIN and END directive (no
serial code is replaced in this case). This example illustrates how SMS can be used to parallelize
a program in pieces while still producing the correct answer. If the subroutine
nasty_dependencies consumes a small amount of serial run-time and the parallel code
need only scale to a few processes then the modeler may choose never to parallelize this routine.
The INSERT and REMOVE directives are used to replace the serial code that references u with
code that references u_global. These directives will be explained in Section 8.2. Section 8.1
will show how to avoid this parallelization even more easily using the SERIAL directive,
although possibly at the cost of performance.

6.2 Applying TRANSFER to Spectral NWP Models

Many spectral NWP models have multiple phases of computation that repeat in a fixed pattern.
Phases often have different optimal decompositions, so performance may be maximized by using

 96

multiple decompositions and transferring between them. Consider the case of one dimensional
decompositions for these models. The physical parameterizations contain complex dependencies
in the vertical. This makes it efficient to decompose in one of the horizontal dimensions. At the
same time, many computer system vendors provide highly optimized assembly FFT libraries that
far out-perform anything that can be done with hand-tuned Fortran code. Taking advantage of
this serial code requires decomposing in a dimension other than i. So, typically, the data are
decomposed in the j dimension during physics and FFT computations. This is decomposition
"a" already seen in Figure 3-1. The Legendre transformations contain complex dependencies in
the j dimension. Therefore, a second decomposition in either i (decomposition "b" in Figure
3-1) or k (decomposition "c" in Figure 3-1) is needed for optimal performance during these
calculations. The TRANSFER directive provides the means to transpose the data from
decomposition "a" to ("b" or "c") and back again.

A future release of this users guide will include an example illustrating how TRANSFER can be
used to help parallelize a simple spectral code.

 97

7 Handling Global Dependencies Using REDUCE

In Section 2.3, we saw how the REDUCE directive was used to implement communication
needed to do global summations and maxima. In this section we examine other forms of the
REDUCE directive. In addition to global summations and maxima, the REDUCE directive can
be used to generate global minima. Reductions of arrays are also supported. Section 7.1
discusses these points. As we will see, the form of REDUCE introduced in Section 2.3 (which
will be referred to as "Standard Reductions") does not necessarily produce the bit-wise exact
same answer as the serial code for global summations of floating point numbers. Section 7.2
introduces a second form of REDUCE called "Bit-wise Exact" that does produce the bit-wise
same answer, regardless of the number of processes.

7.1 More on Standard Reductions

Example 7-1 shows additional examples of standard reductions. Global minima are generated by
specifying the keyword MIN (line 52). Also notice that reductions can be aggregated in the
same way as exchanges (line 50). One of the variables reduced is the non-decomposed array
xsum (line 50). The summation of xsum looks like the following:

Xsum_global(1) = Xsum_local1 (1) + Xsum_local2 (1) + ...
Xsum_global(2) = Xsum_local1 (2) + Xsum_local2 (2) + ...
 .
 .
 .

where Xsum_localP(j) is the value of process-local xsum(j) on process P and
Xsum_global is the value of xsum after the global summation is complete.

 1 program REDUCTIONS
 2 implicit none
 3 include 'basic.inc'
 4
 5 im = 50
 6 jm = 2
 7
 8 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)
 9
 10 call DO_THEM
 11
 12 end
 13
 14 subroutine DO_THEM
 15 implicit none
 16 include 'basic.inc'
 17
 18 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
 19 real x(im,jm)

 98

 20 real y(im,jm)
 21 CSMS$DISTRIBUTE END
 22
 23 real xsum(jm)
 24 real ysum
 25 real xmin
 26 real xmax
 27
 28 integer i
 29 integer j
 30
 31 open (10, file='reduce_data', form='unformatted')
 32 read (10) x, y
 33 close(10)
 34
 35 CSMS$PARALLEL(DECOMP_I, <i>) BEGIN
 36 xsum = 0.0
 37 ysum = 0.0
 38 xmax = x(1,1)
 39 xmin = x(1,1)
 40
 41 do j = 1, jm
 42 do i = 1, im
 43 xsum(j) = xsum(j) + x(i,j)
 44 ysum = ysum + y(i,j)
 45 xmax = max(xmax, x(i,j))
 46 xmin = min(xmin, x(i,j))
 47 end do
 48 end do
 49
 50 CSMS$REDUCE(xsum, ysum, SUM)
 51 CSMS$REDUCE(xmax, MAX)
 52 CSMS$REDUCE(xmin, MIN)
 53
 54 print *
 55 print *, 'Global values'
 56 do j = 1, jm
 57 write(*,100) j, xsum(j)
 58 end do
 59 write(*,150) ysum
 60 write(*,200) xmax
 61 write(*,300) xmin
 62
 63 100 format('j ', i2, ' xsum = ', F13.5)
 64 150 format('ysum = ', F13.5)
 65 200 format('xmax = ', F13.5)
 66 300 format('xmin = ', F13.5)
 67
 68 CSMS$PARALLEL END
 69
 70 return
 71 end

Example 7-1 Program showing additional examples of how the REDUCE directive can be used.

 99

If we were to modify Example 7-1 so that the j dimension is also decomposed then xsum would
be a decomposed variable. In this case, the reduction of xsum would FAIL because SMS does
not currently support reductions that produce decomposed variables. This would require doing
the reduction over a subset of the processes. Support for such reductions will be added in a
future SMS release.

When run with 2 processes, program REDUCTIONS yields the following results:

 Global values
j 1 xsum = 1258.28589
j 2 xsum = 1310.71448
ysum = -2464.28540
xmax = 100.00000
xmin = -100.00000

However, when run with 4 processes, the results are :

 Global values
j 1 xsum = 1258.28577
j 2 xsum = 1310.71436
ysum = -2464.28613
xmax = 100.00000
xmin = -100.00000

Notice that the values for xsum and ysum are slightly different between the 2 and 4 process
runs. We will now see why this is the case.

7.2 Bit-wise Exact Reductions

The differences in results in Example 7-1 are due to round-off error in the floating point addition.
The numbers are added in a different order in the 4 process case as compared to the 2 process
case because, as discussed in Section 2.3.3, the sums are first computed locally before being
combined. In NWP models (which are non-linear systems), if the global sums feed back into the
main model equations, these slight errors can grow and propagate; potentially yielding
completely different model predictions for runs with differing numbers of processes.

For testing purposes, it is useful to avoid these round-off errors. To do this, SMS offers a form
of REDUCE that produces the bit-wise exact same answer for any number of processes.
Example 7-2 below shows how this works.

 1 program EXACT_REDUCTIONS
 2 implicit none
 3 include 'basic.inc'
 4
 5 im = 50
 6 jm = 2
 7
 8 CSMS$CREATE_DECOMP(DECOMP_I, <im>, <0>)

 100

 9
 10 call DO_THEM
 11
 12 end
 13
 14 subroutine DO_THEM
 15 implicit none
 16 include 'basic.inc'
 17
 18 CSMS$DISTRIBUTE(DECOMP_I, <im>) BEGIN
 19 real x(im,jm), y(im,jm)
 20 CSMS$DISTRIBUTE END
 21
 22 real ysum
 23
 24 integer i
 25 integer j
 26
 27 open (10, file='reduce_data', form='unformatted')
 28 read (10) x, y
 29 close(10)
 30
 31 CSMS$PARALLEL(DECOMP_I, <i>) BEGIN
 32
 33 CSMS$REDUCE(<y, ysum>, SUM) BEGIN
 34 ysum = 0.0
 35 do j = 1, jm
 36 do i = 1, im
 37 ysum = ysum + y(i,j)
 38 end do
 39 end do
 40 CSMS$REDUCE END
 41
 42 print *
 43 print *, 'Global values'
 44 write(*,150) ysum
 45
 46 150 format('ysum = ', F13.5)
 47
 48 CSMS$PARALLEL END
 49
 50 return
 51 end

Example 7-2 Program illustrating the bit-wise exact form of the REDUCE directive.

The modified REDUCE syntax can be see on lines 33 and 40. The syntax requires a BEGIN and
END directive. The BEGIN directive lists the variable being summed (y) and the resulting
global sum (ysum). The keyword SUM is also included but is, in general, optional since this
version of REDUCE only supports global sums. The serial code between the two directives
MUST sum y and store the result in ysum. SMS replaces these calculations with code that
gathers each process's piece of y into a globally-sized (replicated) variable and then sums the

 101

result in the correct order. Conceptually, the generated parallel code would look like the
following:

 call GATHER(y, y_global)
 ysum = 0.0
 do j = 1, jm_global
 do i = 1, im_global
 ysum = ysum + y_global(i,j)
 end do
 end do

The "gather" operation is done in the same way as TRANSFER was used to gather variables as
discussed in Section 6.1. Since the gather operation requires communicating the entire contents
of y to all processes, this form of global sum is significantly less efficient than the "Standard"
form. In that case, only the process-local scalar sums were communicated to all the processes.

Even in the bit-wise exact form, the REDUCE directive will only produce bit-wise exact sums if
an environment variable called SMS_BITWISE is set to the value EXACT. Running
EXACT_REDUCE in a c-shell environment might look as follows:

>> setenv SMS_BITWISE EXACT
>> smsRun 2 exact_reduce
SMS: BITWISE EXACT reductions will be used when requested.
 Global values
ysum = -2464.28418

Notice that the message printed by SMS regarding reductions now indicates that bit-wise exact
reductions will be used.

If SMS_BITWISE is NOT set to EXACT then the effect of the REDUCE directive is the same as
in the "standard" reduction; each process computes a local sum of y and the resulting scalars are
summed across the processes.

>> setenv SMS_BITWISE INEXACT
>> smsRun 2 exact_reduce
SMS: Standard reductions will be used.
 Global values
ysum = -2464.28540

Notice that the answer is the same as that seen in Example 7-1 for the 2 process case.

An important subtle point to make about the bit-wise exact syntax is that the REDUCE
BEGIN/END directives and enclosed code MUST be contained within a PARALLEL region.
Otherwise, in Example 7-2, when SMS_BITWISE is NOT set to EXACT, the global versions of
the loops starting at line 35 would execute even though y is decomposed; generating an out-of-
bounds error. In actuality, SMS detects this mistake and generates the following syntax error
message:

 102

 Bit-wise exact reductions must be in a parallel region.

In summary, the "bit-wise exact" form of global summation is valuable for testing purposes,
particularly for non-linear systems. However, for long model runs, when optimal performance is
important, the "standard" form of REDUCE will likely be more appropriate because it is much
faster. The programmer can use the bit-wise exact form of REDUCE in the code and then decide
at run-time, with the SMS_BITWISE environment variable, which reduction to use.

 103

8 Other Directives

There will be instances where the SMS directives seen so far are not sufficient to parallelize a
section of code. Several directives are introduced to handle these cases. They are: SERIAL,
INSERT, REMOVE, and IGNORE. These are usually the directives of last resort.

8.1 SERIAL

Many cases where the previously discussed SMS directives can not be easily applied to a piece
of serial code occur in portions of models where efficient performance is not critical. One
example is initialization. For long model runs, the effects of inefficient code during initialization
become negligible. Diagnostic print messages are another case. If the user can turn off
diagnostic messages when high performance is needed then the presence of inefficient parallel
code that generates these messages does not pose a problem. We saw a third case in Example
6-1 where it may be acceptable to leave a piece of the original code un-parallelized because its
computations represent only a small fraction of the total run-time of the program.

The SERIAL directive is the easiest way to generate code that produces the right answer in these
cases. The directive defines a region over which serial computations will be done. The directive
looks as follows:

CSMS$SERIAL BEGIN

 Code to run serially

CSMS$SERIAL END

Fundamentally, the code contained between the SERIAL BEGIN and END directives is executed
by one processor; just as if the code were being run serially instead of as part of a parallel SMS
program. For the code to produce the correct answer, it must operate on global, not decomposed
arrays. Therefore, any decomposed arrays referenced within the serial region must be gathered
into global equivalents before the designated processor executes the code. After the code is
executed, any of these gathered global arrays that are modified must be scattered back to all the
processes. In addition, any non-decomposed variables that have been modified must be
broadcast to all the processes. Since determining what data have been modified is non-trivial,
particularly in the case where they are modified via subroutine call, SMS currently
gathers/scatters all decomposed variables and broadcasts all non-decomposed variables
referenced in the code between the SERIAL BEGIN/END. This communication causes the code
to run even more slowly than the original serial code.

In Example 8-1, x and y are decomposed while z is not. The subroutine calls at lines 39-40
read in x and z using C language routines. These routines cannot be handled by SMS. The
print statement at line 41 could be handled by using TRANSFER to gather y into a global
variable (call it y_global) and then printing y_global(2,2). However, application of the

 104

SERIAL directive is simpler. PPP generates code that gathers x and y into global variables. A
designated processor then executes the code at lines 39-41. Finally, the generated code scatters
x and y and broadcasts the value of z. When high performance is desired, the user can avoid
this poorly performing code by setting ENABLE_DIAGS to .false.

[Include file: serial.inc]
 1 integer im,jm
 2 common /sizes_com/ im,jm
 3 CSMS$DECLARE_DECOMP(DECOMP_IJ)

[Source file: serial1.f]
 1 program SERIAL
 2
 3 include 'serial.inc'
 4
 5 integer i
 6 integer j
 7
 8 im = 5
 9 jm = 4
 10
 11 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>)
 12
 13 call DO_IT
 14
 15 end
 16
 17 subroutine DO_IT
 18 include 'serial.inc'
 19
 20 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 21 real x(im,jm)
 22 real y(im,jm)
 23 CSMS$DISTRIBUTE END
 24 real z
 25 logical ENABLE_DIAGS
 26 ENABLE_DIAGS = .true.
 27
 28 open(10, file='yin', form='unformatted')
 29 read(10) y
 30 close(10)
 31
 32 C Some parallel computations
 33 C .
 34 C .
 35 C .
 36
 37 if (ENABLE_DIAGS) then
 38 CSMS$SERIAL BEGIN
 39 call READ_2D_ARRAY_USING_C(x, im, jm)
 40 call READ_SCALAR_USING_C(z)
 41 print *, 'y(2,2), z ', y(2,2), z
 42 CSMS$SERIAL END

 105

 43 end if
 44 C More parallel calculations
 45 .
 46 .
 47 return
 48 end

Example 8-1 A sample program showing how the SERIAL directive can be used to generate correct parallel
code in a simple fashion when other SMS directives will not suffice.

Example 8-2 shows a modified version of Example 6-1 that uses the SERIAL directive. The
solution that uses the SERIAL directive is much simpler.

 1 program TRANSFER3
 2 implicit none
 3
 4 integer im
 5 parameter(im=60)
 6
 7 integer jm
 8 parameter(jm=90)
 9
 10 integer km
 11 parameter(km=5)
 12
 13 CSMS$DECLARE_DECOMP(DECOMP_IJ, <im/2, jm/2>)
 14
 15 CSMS$DISTRIBUTE(DECOMP_IJ, im) BEGIN
 16 real u(km, im,jm)
 17 CSMS$DISTRIBUTE END
 18
 19
 20 C BEGIN
 21
 22 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>)
 23
 24 call manageable_dependencies(u)
 25
 26 C parallelize later, maybe
 27 CSMS$SERIAL BEGIN
 28 call nasty_dependencies(u)
 29 CSMS$SERIAL END
 30
 31 call more_manageable_dependencies(u)
 32

33 end

Example 8-2. Simpler version of Example 6-1 using the SERIAL directive.

 106

Although useful, the serial directive has some important restrictions. One is that subroutines
called from within a serial region may not modify common block variables unless they are
passed as arguments. So suppose in Example 8-1, we insert

 call sub1

after line 38. Further suppose sub1 looks as follows:

 subroutine sub1
 real xc
 common /com1/ xc
 xc = 2.0
 return
 end

PPP has no way of knowing that xc has to be broadcast before the end of the serial region
because it does no inter-procedural analysis. If xc were an argument passed to sub1 then the
SERIAL directive could be used.

A second case where a SERIAL directive cannot be used is shown in Example 8-3. Here, the
constant 2 is passed to subroutine DO_IT. Since DO_IT calls a C routine that uses dummy
argument n, a SERIAL directive would normally be required to handle this. However the
SERIAL directive generates a broadcast of dummy argument n. This broadcast will attempt to
write to variable n. Since variable n is the constant 2, the result will be, at best, a core dump.
The solution would be to assign 2 to a variable in the main program and pass the variable to
subroutine DO_IT.

 1 program SERIAL
 2
 3 include 'serial.inc'
 4
 5 integer i
 6 integer j
 7
 8 im = 5
 9 jm = 4
 10
 11 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <0,0>)
 12
 13 call DO_IT(2)
 14
 15 end
 16
 17 subroutine DO_IT(n)
 18
 19 integer n
 20
 21 CSMS$SERIAL BEGIN
 22 call c_routine(n)

 107

 23 CSMS$SERIAL END
 24
 25 return
 26 end

Example 8-3 Example code where use of the SERIAL directive generates parallel code that fails to run
properly.

8.2 INSERT and REMOVE

Two directives, INSERT and REMOVE, are used to modify source code directly. Working
together, these directives are very useful for translating code that cannot be converted using other
SMS directives. Each line that the user wishes to insert must be prefaced by INSERT. The
inserted code that follows must adhere to Fortran 77 fixed format rules. REMOVE removes all
text between the directive’s BEGIN and END statements.

CSMS$REMOVE BEGIN
Code that will not be executed in the SMS program
CSMS$REMOVE END
CSMS$INSERT Code that will be executed in the SMS program

Example 6-1 showed how these directives can be used.

8.3 IGNORE

IGNORE is another directive used to manipulate code directly. This directive instructs PPP to
ignore any text between the directive’s BEGIN and END. This allows the user to prevent
modifications of the serial code by PPP.

CSMS$PARALLEL(dh,<i>,<j>) BEGIN
 do 200 i=1, nx
 do 200 j=1, ny
 z(i,j,k) = z(i,j,k)+ y(i,j,k)
200 continue
CSMS$IGNORE BEGIN
 do 300 i=1,3
 call smooth(z)
300 continue
CSMS$IGNORE END
CSMS$PARALLEL END

Example 8-4. Using IGNORE to prevent PPP translation.

 108

In Example 8-4, the enclosing parallel region around the 200 loop will ensure translation of the
loop variable “i” to a local value. However, we do not wish to translate the 300 loop because “i”
is used to iterate on the function “smooth”. To avoid translation of this loop, the IGNORE is
used. Optionally, the parallel region could be ended before the 300 loop and then started again
after the iteration loop ends.

 109

9 I/O

One of the most powerful features of SMS is its ability to support most types of I/O without
requiring any directives. In particular, this is the case for unformatted I/O of scalars and
complete arrays, as will be discussed in Section 9.1. The fact that communication patterns for
I/O of decomposed and non-decomposed arrays differ is hidden from the programmer. In either
case, SMS automatically generates the communication needed to read or write data to or from
disk in the same sequence as the serial code would have done it, regardless of the number
processes used. By default, SMS assumes the data are stored in native Fortran binary format on
disk. However, SMS provides environment variables that can be set to change this default as
discussed in Section 9.1.

The I/O of pieces of arrays do require special attention as will be discussed in Section 9.2.
Formatted input is, for the most part, handled automatically. However, there are some
limitations that will be described in Section 9.3. As discussed in previous sections, formatted
output sometimes requires the programmer to specify if and how the data should be printed.
SMS allows the user to make these decisions by providing several print modes as will also be
discussed in 9.3. Finally, SMS offers several easy-to-use methods for improving I/O
performance as discussed in Section 9.4.

9.1 General Unformatted I/O

Figure 9-1 illustrates dependencies for read and write of a simple one-dimensional decomposed
array. During a read, data from a single file must be parceled out to each process. This type of
communication pattern is called "scatter". During a write, data from each process must be
combined in the proper order and written to disk. This type of communication pattern is a
different form of "gather" than that seen for TRANSFER and bit-wise exact REDUCE. In this
case, instead of gathering the data into a global variable that is replicated in memory on all
processes, it is gathered into a single file on disk. "Proper order" means the data must be read
from or written to disk in the same sequence as the serial code would have done it. Though it
appears quite simple in Figure 9-1, the data reorganization required to match serial ordering in
files can be quite complex, especially for two-dimensional decompositions or when the
decomposed arrays have halo regions (Figure 9-2). Additionally, when variables being input
have halo regions associated with them, these regions will be automatically updated by SMS.

 110

P1

1 3 4 52

P2

1 3 4 52

P3

1 3 4 52

x

Read
(“scatter”)

Write
(“gather”)

real x(15)

Figure 9-1 Schematic of the input and output of a decomposed array. On input, one process reads the global
data from disk. The appropriate sections of the global array are then “scattered” to each process. On
output, the decomposed data are gathered into a global array and then written to disk.

 111

P3 P4

P1 P2

Serial File Data Layout

Halo Region

Parallel Memory Layout

Figure 9-2 Schematic of the re-ordering required to write and read two-dimensionally decomposed data to
disk in the same order as the serial code would write it. Special care has to be taken to write the only the
interior of each process-local domain and not the halo data. The halo regions are filled during the read
operations.

 112

Figure 9-3 illustrates dependencies for read and write of a non-decomposed variable. During a
read, a copy of data from a single file must be sent to each process. This type of communication
pattern is called "broadcast". During write, it is only necessary to write data from a single
process because each process should have an identical copy of the variable.

P1 P2 P3

g

Read (“broadcast”)

Write (“root”)

real g

Figure 9-3 Schematic of the input and output of a non-decomposed array. On input, one process reads the
data from disk. The data are then replicated on all other processes. On output, a designated “root” process
writes the data to disk.

Example 9-1 demonstrates unformatted I/O of both decomposed and non-decomposed variables.

[Include file: io.inc]

 1 integer im, jm
 2 common /sizes_com/ im, jm
 3 CSMS$DECLARE_DECOMP(DECOMP_IJ)

 113

[Source file: binary.f]

 1 program binary_io
 2 include 'io.inc'
 3 im = 10
 4 jm = 5
 5 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <1,0>)
 6 call write_data
 7 end
 8
 9 subroutine write_data
10 include 'io.inc'
11 integer i, j
12 real scale
13 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
14 integer x(im,jm), y(im,jm)
15 CSMS$DISTRIBUTE END
16 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
17 do j=1,jm
18 do i=1,im
19 CSMS$TO_GLOBAL(<1,i>, <2,j>) BEGIN
20 x(i,j) = (100 * i) + j
21 y(i,j) = mod(i,2)
22 CSMS$TO_GLOBAL END
23 end do
24 end do
25 CSMS$PARALLEL END
26 scale = -1.0
27 open (17,file='io1_out.dat',form='unformatted')
28 write (17) x, y, scale
29 close (17)
30
31 open (18,file='io1_out.dat',form='unformatted')
32 read (18) x, y, scale
33 close (18)
34 return
35 end

 Example 9-1 Program that does output of both decomposed and non-decomposed data. No additional
directives are required for the correct output to be produced, regardless of the number of processes.

In Example 9-1, SMS automatically translates all the read and write statements for both
decomposed arrays x and y and non-decomposed scalar scale to the appropriate parallel I/O
operations. When automatically generating parallel I/O operations, PPP uses information in the
DISTRIBUTE directives to determine how to generate communications to satisfy the I/O
dependencies. Notice that any types of decomposed or non-decomposed variables can be mixed
in a single write or read statement. It is not necessary to reorganize existing serial read or write
statements to take advantage of automatic parallelization by SMS.

By default, SMS assumes unformatted files are stored in native FORTRAN binary format. The
default behavior can be modified using the following environment variables:

 114

SMS_READ_FORMAT
SMS_WRITE_FORMAT
SMS_IO_FORMAT

If the user specifies both SMS_IO_FORMAT and SMS_READ_FORMAT then
SMS_READ_FORMAT takes precedence.

 If the user specifies both SMS_IO_FORMAT and SMS_READ_FORMAT then the following
warning will be printed at the beginning of the run:

SMS: Warning! SMS_IO_FORMAT ignored; SMS_READ_FORMAT takes precedence.

The same holds for SMS_WRITE_FORMAT.

The currently available (case insensitive) formats are:

IBM
SUN
SGI
FUJITSU
HP
DEC
COMPAQ
IA32
MPI
MPI_EXTERNAL
EXTERNAL
SMS

Note that, in many cases, file formats with different names are actually the same format. For
example, SGI and SUN are really the same format. It is also important to point out that MPI,
MPI_EXTERNAL, EXTERNAL, and SMS all refer to the portable MPI I/O external format.
The advantage to using this format is that any file written by an SMS program may be read by
any other SMS program on any other machine. This is true regardless of the number of
processes used on either machine because SMS preserves serial data ordering.

To convert data files from one format to another, simply write a serial program that reads and
writes the data, compile and link with SMS and then set the afore-mentioned environment
variables appropriately.

9.2 Unformatted I/O of Elements of Decomposed Arrays.

Some NWP models require I/O of pieces of decomposed arrays. We saw in Section 8.1 how the
SERIAL directive could be used to do this. Example 9-2 shows a more efficient solution to this
problem.

 115

 1 program WRITE_POINTS
 2 include 'io.inc'
 3 im = 10
 4 jm = 5
 5 CSMS$CREATE_DECOMP(DECOMP_IJ, <im,jm>, <1,0>)
 6 call compute
 7 end
 8
 9 subroutine compute
10 include 'io.inc'
11 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
12 integer x(im,jm)
13 CSMS$DISTRIBUTE END
14
15 open (10, file='io1_out.dat', form='unformatted')
16 read (10) x
17 close(10)
18 call write_point_data(x)
19 return
20 end
21
22 subroutine write_point_data(x)
23 include 'io.inc'
24
25 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
26 integer x(im,jm)
27 CSMS$DISTRIBUTE END
28
29 CSMS$INSERT integer xpt(2), ipt
30
31 CSMS$INSERT do ipt=1,2
32 CSMS$INSERT xpt(ipt) = 0
33 CSMS$INSERT end do
34
35 CSMS$PARALLEL(DECOMP_IJ) BEGIN
36 CSMS$GLOBAL_INDEX(1,2) BEGIN
37
38 CSMS$INSERT xpt(1) = x(1,1)
39 CSMS$INSERT xpt(2) = x(im/2,jm/2)
40
41 CSMS$GLOBAL_INDEX END
42 CSMS$PARALLEL END
43
44 CSMS$REDUCE(xpt,SUM)
45 open (17,file='io2_out.dat',form='unformatted')
46
47 CSMS$REMOVE BEGIN
48 write (17) x(1,1), x(im/2,jm/2)
49 CSMS$REMOVE END
50
51 CSMS$INSERT write (17) xpt
52
53 close (17)
54 return

 116

55 end

Example 9-2 A program that illustrates how SMS can be used to output pieces of decomposed arrays
efficiently.

In Example 9-2, subroutine write_point_data outputs two data points of array x to
unformatted file io2_out.dat. Since both dimensions of array x are decomposed, it is likely
that the two data points will not be on a single process. Other processes may have no data to
write. The code at lines 31-33 initializes xpt to 0 for every process. The GLOBAL_INDEX
directive ensures the code on lines 38-39 assigns to xpt the correct values to be written only for
the process(es) that contain(s) the correct data points. Finally, the REDUCE directive at line 44
stores in xpt the correct answer for every process by summing the zero and non-zero values.

For example, suppose after line 38, xpt(1) looks as follows:

Process 1 2 3
Data 0 502 0

The REDUCE directive will globally sum 0, 502 and 0. The resulting sum (502) is stored in
xpt for every process. Now the write statement on line 51 can write the correct value of
x(1,1) to disk.

9.3 Formatted I/O

9.3.1 Formatted Input

Formatted input including namelists is handled automatically by SMS. The user does not need to
add any directives. The only caveat is that input variables cannot be decomposed arrays. In this
case, a work-around is to enclose the formatted read statements within a SERIAL directive.
Since formatted reads typically occur infrequently during the course of a model run, this
approach usually does not incur a significant performance penalty.

9.3.2 Formatted Output

Formatted output requires further discussion. The simple task of printing a message on the
screen becomes more complicated in an SPMD programming model. Consider the following
simple print statement:

 print *,'HELLO'

There are no clear standard definitions of what will appear on the screen when a "parallel" print
statement is executed. Will each process print a separate message? Will the separate messages
appear on different lines on the screen? Will all processes be forced to wait until the print is
complete before useful work can continue? If the statement were executed on three processes,
we might see any of the following output:

 117

HELLO

HELLO
HELLO
HELLO

HHHEEELLLLLLOOO

HELLHEHLEOLOLLO

During the brief history of parallel computing, each of these possibilities has been implemented
on at least one parallel machine.

SMS simplifies this situation by providing three "print modes" that allow the user to control the
behavior of parallel print. The modes are ROOT, ASYNC, and ORDERED. These print modes
are illustrated in the following example and the subsequent discussion. Assume, line 18 of
subroutine COMPUTE in Example 9-2 is replaced with:

 call print_stat(x)

Subroutine print_stat is as follows:

 1 subroutine print_stat(x)
 2 include 'io.inc'
 3 integer i, j
 4 CSMS$DISTRIBUTE(DECOMP_IJ, <im>, <jm>) BEGIN
 5 integer x(im,jm)
 6 CSMS$DISTRIBUTE END
 7 integer xmax
 8 CSMS$PARALLEL(DECOMP_IJ,<i>,<j>) BEGIN
 9 xmax = 0
10 do 200 j=1,jm
11 do 200 i=1,im
12 xmax = max(xmax,x(i,j))
13 if (x(i,j).le.101) then
14 CSMS$PRINT_MODE(ASYNC) BEGIN
15 print *,'WARNING: x.le.101 !! ',x(i,j)
16 CSMS$PRINT_MODE END
17 endif
18 200 continue
19 CSMS$PARALLEL END
20
21 CSMS$PRINT_MODE(ORDERED) BEGIN
22 CSMS$INSERT print *,'DEBUG: local maximum value = ',xmax
23 CSMS$PRINT_MODE END
24
25 CSMS$REDUCE(xmax,MAX)
26
27 CSMS$PRINT_MODE(ROOT) BEGIN
28 print *,'maximum value = ',xmax
29 CSMS$PRINT_MODE END
30 return

 118

 31 end

Example 9-3 Subroutine showing various examples of use of SMS print modes.

Assume the executable is called print_modes. When the serial code versions of
binary_io and then print_modes are run, the following is printed on the screen:

>> binary_io
>> print_modes

 WARNING: x.le.101 !! 101
 maximum value = 1005

When the parallel codes are run on 1 process, the following is printed on the screen:

>> smsRun 1 binary_io_parallel

>> smsRun 1 print_modes_parallel
 WARNING: x.le.101 !! 101
 DEBUG: local maximum value = 1005
 maximum value = 1005

For 4 processes:

>> smsRun 4 print_modes_parallel
 WARNING: x.le.101 !! 101
 DEBUG: local maximum value = 503
 DEBUG: local maximum value = 1003
 DEBUG: local maximum value = 505
 DEBUG: local maximum value = 1005
 maximum value = 1005

The print statement on line 28 in Example 9-3, is printed using the ROOT print mode. This
mode causes a single message to be printed on the screen. Only one system-dependent
designated process will execute the print statement; the others will skip it and can immediately
continue with useful computations. The ROOT print mode will cause the parallel code to print
the same messages as the serial code in most cases.

The print statement on line 22 is executed using the ORDERED print mode. This mode causes
one message to be printed on the screen for each process and guarantees that the messages
always appear in the same order. It is most useful for debugging purposes. However, in order to
guarantee message ordering, no process can continue until all processes have executed the print
statement. This means care must be taken that all processes will ALWAYS execute an ordered
print or the program will hang. For, suppose we use the ORDERED print mode at line 14:

 if (x(i,j).le.101) then
CSMS$PRINT_MODE(ORDERED) BEGIN
 print *,'WARNING: x.le.101 !! ',x(i,j)
CSMS$PRINT_MODE END

 119

 endif

In this case, we see the same results for the one-process run. However, the four-process run
produces the following results:

>> smsRun 4 print_modes_parallel
 WARNING: x.le.101 !! 101
 DEBUG: local maximum value = 1003
 DEBUG: local maximum value = 505
 DEBUG: local maximum value = 1005

In this case, the program hangs (deadlocks) before the final message can be printed because the
warning print statement is now an ordered-mode print that has been executed by only one
process. The program will wait forever for the other processes to enter this print statement. The
root mode is also not appropriate here because the warning message would not be printed if point
101 were not on the root process. In this case deadlock would not occur, but the warning
message would also not be printed.

The asynchronous mode is the proper mode to use in cases like the printed warning statement on
line 15 (Example 9-3) because there is no guarantee that all processes will execute the print
statement. In this mode, one message will appear on the screen for each process that executes
the print statement. Like the root mode, there is no process synchronization during asynchronous
prints. As a result, ordering of print statements may vary from one run to the next when
asynchronous mode is used. For example, suppose we use the ASYNC mode for line 22 instead
of ORDERED.

CSMS$PRINT_MODE(ASYNC) BEGIN
CSMS$INSERT print *,'DEBUG: local maximum value = ',xmax
CSMS$PRINT_MODE END

Running with four processes two times might produce the following results:

>> smsRun 4 print_modes_parallel
 DEBUG: local maximum value = 1005
 DEBUG: local maximum value = 1003
 DEBUG: local maximum value = 505
 WARNING: x.le.101 !! 101
 DEBUG: local maximum value = 503
 maximum value = 1005

>> smsRun 4 print_modes_parallel
 DEBUG: local maximum value = 505
 DEBUG: local maximum value = 1005
 WARNING: x.le.101 !! 101
 DEBUG: local maximum value = 1003
 DEBUG: local maximum value = 503
 maximum value = 1005

 120

Note that the asynchronous-mode prints can appear in any order and can even appear out-of-
order with other non-asynchronous-mode prints. This can be confusing in some cases. Also
important to note is that ASYNC mode does not work properly when the SMS program is being
run in “serverless” mode (see Section 9.4.3). The timing of when the print output appears is
unpredictable.

If we remove lines 27 and 29 then there is no specific print mode in the code. In that case, SMS
uses the value of environment variable SMS_PUTS_MODE. It can be set to ROOT,
ORDERED, or ASYNC. If the environment variable is not defined then it defaults to ROOT.

To implement formatted output of decomposed arrays, either the SERIAL directive can be
applied or, in some cases, the approach shown in Example 9-2 can be used.

 121

9.4 I/O Performance Tuning

This section discusses ways the user of SMS can optimize the I/O performance of their codes.
These optimizations require a good understanding of how input and output operations are
handled in SMS. If you wish to ignore this discussion, the following table offers suggested
values for the environment variables used to tune SMS I/O.

There are two different cases:

 CASE I: Input files will fit in server memory

 Server/No Cachers Server/Cachers Serverless
 --------------------- --------------------- ----------
SMS_RBS size of largest input size of largest input default
 file in bytes divided file in bytes divided
 by (SMS_RBC-1) by (SMS_RBC-1)

SMS_RBC default (16) default (16) N/A

SMS_WBS size of largest output default default
 file in bytes

SMS_CLOSE_MODE require-flush require-flush N/A

SMS_IOC_SIZE N/A size of largest output N/A
 File in bytes divided
 by the number of cache
 processes and
 multiplied by 2

SMS_RAN_RSTYLE file file N/A

 CASE II: Input files will NOT fit in server memory
 (only affects input)

 Server/No Cachers Server/Cachers Serverless
 --------------------- --------------------- ----------
SMS_RBS size of largest input size of largest input default
 variable in bytes variable in bytes
 divided by (SMS_RBC-1) divided by (SMS_RBC-1)

SMS_RBC default (16) default (16) N/A

SMS_RAN_RSTYLE one-var one-var N/A

Figure 9-4: Suggested values for SMS environment variables that affect I/O performance,

 122

9.4.1 General Guidelines

Two general guidelines should always be considered to improve both serial and parallel I/O
performance. First, the user should do as little I/O as possible. Since I/O operations do not scale
well, their effect on parallel performance will increase as the number of processes increase.
What is an insignificant amount of run-time for 2 processes may be quite significant for 200
processes.

One optimization that can be very useful is to optionally turn off all print statements. Many serial
codes already allow users to turn off some or even all print statements by setting a flag at
run-time. This may speed up the serial code in some cases. The optimization is very useful in a
parallel code where, on some machines, disabling prints can result in significant performance
improvements. The following code fragment illustrates this common optimization:

 if (print_enabled) then
 print *,'whatever...'
 endif

In this case, “print_enabled” could be input through a namelist at the beginning of program
execution.

A second general guideline to improve I/O performance is to combine I/O operations whenever
possible. For example,

read(10) u
read(10) v

could be combined into a single read statement:

read(10) u,v

This will maximize the size of data blocks read from or written to disk and minimize I/O latency.
Both unformatted and formatted statements should be considered for these optimizations.

9.4.2 The SMS Server Process

By default, SMS designates an additional process, called the server process, to manage the other
processes and to handle all formatted and unformatted I/O operations. This allows computations
to be done concurrent with I/O operations and can improve the overall performance of SMS
program execution. Figure 9-5 illustrates a program run using four compute processes and a
SMS server process.

 123

Process 1

Process 3

Process 2

Process 5

Service Process

Compute Processes

SMS Program Execution with a Service Process

Process 4

Figure 9-5: In this example, four processes are requested to run the program. By default, an additional
process, called the server process, will be used by SMS for process management and I/O operations.

9.4.3 Serverless I/O

For small numbers of processors (less than 8), it may be beneficial to combine the server process
functions with one of the computational processes. This type of operation is called serverless I/O
and is illustrated in Figure 9-6.

If serverless I/O is used, the I/O functions that would normally be run on a separate process will
be combined with one of the compute processes. Serverless SMS can be requested through an
environment variable given by the command:

>> setenv SMS_SERVER_MODE serverless

On most machines, where there will be a one-to-one correspondence between processes and
processors, serverless I/O will improve performance by making one more processor available to
do computations. However, when large numbers of processes are used, program execution will
usually be faster when a server process is used.

 124

P1 P2 P3 P4 PROCESS:

Computational
Operations
SMS I/O Operations

Serverless SMS Program Execution

KEY:

Idle Time

Figure 9-6: An illustration of four SMS processes used to run a program without a server process. In this
example, process P1 must handle both program computations and SMS server functions that include I/O
operations. While these operations occur, the other processes will be idle.

9.4.4 The FLUSH_OUTPUT Directive

The FLUSH_OUTPUT directive is used to optimize output performance; it is only useful when a
server process is present. During write operations, the I/O server process buffers the data to be
output in memory, re-orders the decomposed data into serial order, and then writes it out in large
blocks to disk. By default, any write to disk will be delayed until the buffer is full or the file is
closed. When this happens, buffers are "flushed" and their contents written to disk in large
blocks. While buffers are being flushed, any processes requesting I/O services will have to wait
until the flush operation is complete. The environment variable SMS_CLOSE_MODE can be set
to “require-flush” for full user control of when buffers are flushed (unless they are full).

Further performance improvement can be gained by controlling when these buffers are flushed
using the SMS directive, FLUSH_OUTPUT. This directive instructs the SMS I/O server
process to flush the buffers immediately. If FLUSH_OUTPUT is placed so no other I/O requests
are made during the flush operation, then no process will have to wait for the flush. If any I/O
request is encountered, it must wait until the flush operation is complete thus minimizing the
effectiveness of FLUSH_OUTPUT.

 125

The following code fragment shows how this directive can be used:

 open (17,file='main_fields.dat',form='unformatted')
 write (17) u,v,w,p,t
 close (17)
c useful computations ...

 open (17,file='moisture.dat',form='unformatted')
 write (17) qs,qi,qr,qg,qw
 close (17)
CSMS$FLUSH_OUTPUT

c more useful computation ...

Example 9-4. Proper placement of a FLUSH_OUTPUT directive.

In this example, two files are written. As long as no other I/O (unformatted, formatted, or print)
operations occur while the flush instruction is being processed, useful computations will proceed
at full speed while data is simultaneously re-ordered and written to disk. This ability to overlap
I/O with useful computation is key to achieving scalable I/O performance on many machines.
However, any I/O statement that occurs soon after the flush operation will be sufficient to make
the directive ineffective. For example, when a print statement appears just after the
FLUSH_OUTPUT, it will force one of the processes to wait until the flush operation completes.
Most likely, all other processes will eventually end up waiting for this process and useful
computation will quickly come to a halt until the flush completes:

 open (17,file='diagnostics.dat',form='unformatted')
 write (17) x1,x2
 close (17)
CSMS$FLUSH_OUTPUT
 print *,'bad idea to print something here...'
... more useful computation

Example 9-5. Improper placement of a FLUSH_OUTPUT directive.

9.4.5 Improving Output Performance

To increase the performance of output operations, two options are available. First, SMS allows
the user to designate at run-time any number of processes to serve as output cache processors.
For example, Figure 9-7 illustrates a program that is run using twelve computational processes,
two output cache processes, and a server process.

 126

Cache

Processes Server
Process

P1 P2

P4

P3

P5 P6

SMS_IOC_SIZE

SMS_WBS

Disk

Computational
Processes

P7 P8

P10

P9

P11 P12

Figure 9-7: An illustration of SMS output when cache processes and a server process are used. SMS output
operations pass data from the computational domain to the cache processes (if specified). Data is re-ordered
on the cache processes before being passed through the server process to disk. The amount of memory
allocated to the cache processes and the server process can be controlled using SMS_IOC_SIZE and
SMS_WBS respectively.

The function of cache processors is to temporarily store data being output so it can be reordered
and then written to disk. The computational processes can write their data to multiple cachers at
high speeds and although these cachers will proceed at relatively slow speeds, total execution
time is not affected because disk writes can be done at the same time as computations. Further,
cache processes provide more memory capacity to temporarily store the data before it is written
to disk. The number of output cachers can be requested at run-time using the -smswb option to
the smsRun command. For example:

>> smsRun nprocs execname -smswb <ncachers>

executes a program where nprocs is the number of computational processes, execname is the
name of the executable, and ncachers is the number of output cachers to be used in the run.
Refer to Section 10 more details about running an SMS program.

For optimal performance, there should be enough cache processes to store all data to be output at
one time. By default, SMS allocates 8 Mbytes of memory for each cache process. However, the
environment variable SMS_IOC_SIZE is provided to allow the user to set the amount of memory
(in bytes) they wish to allocate on each cache process. The command:

>> setenv SMS_IOC_SIZE 1000000

 127

will allocate one million bytes of cache space. Since up to 50 percent of the cache space can be
lost to the overhead required to store the data segments, a recommended size for this field is
double the size of the expected output. For example, assume we wish to output the following
array

real*4 big_array(100,200,300)

It will require 24 Mbytes of memory to output this array (4*100*200*300). This figure should
then be doubled to account for SMS overhead costs. If each cache processor contains 10 Mbytes
of memory available for SMS caching, we will need to allocate five cache processes to output
this array efficiently.

A second way to improve output performance is to change the memory allocated to store data
before being written to disk. Since output is always written to a buffer on the server process,
modifying its size can improve performance. By default the size of this buffer is 256 Mbytes,
however this value can be changed through the SMS environment variable: SMS_WBS. If write
cachers are not used, then this variable should be set to the size of the largest output file when
possible, otherwise output performance could degrade. When write cachers are used, the default
value is usually sufficient.

9.4.6 Improving Input Performance

The server process is used to read all formatted and unformatted input data; cache processes are
not used for input. If the data is decomposed, they are scattered to the other processes; if the data
is non-decomposed, it is copied to the other processes.

By default, three environment variables can be used to control SMS input performance:
SMS_RBS, SMS_RBC, and SMS_RAN_RSTYLE. SMS_RBS determines the size of each
block that will be allocated to store input variables read from disk. SMS_RBC defines the
number of blocks of size SMS_RBS that will be used for input. Finally, SMS_RAN_STYLE
determines if files or individual variables will be input at one time. Figure 9-8 illustrates how
these variables are used for input operations.

If a single file is input, the environment variable SMS_RBS should be set to the size of that file
and SMS_RBC should be set to one. If multiple files (e.g. Initial conditions and boundary
conditions) are input with differing sizes, SMS_RBS should be set to a common factor of the size
of each input file. For example suppose two files are required; an initial conditions file of size 53
Mbytes and a boundary conditions of size 16 Mbytes. An approximate common factor for these
two files is 8 Mbytes (8*2=16, 8*6=54). Therefore, good starting values would be:
SMS_RBS=8Mbytes, SMS_RBC=6.

Using these variables, the total size of each input file should be considered when optimizing for
performance. For example the execution of a program may be handled with two files: input of

 128

initial conditions, followed by the input of boundary conditions. There should be sufficient
memory on a single process to store the entire contents of each input file.

Computational

Domain

Server Process

SMS_RBS

SMS_RBC=3

Process 1

Process 2

Process 3

Process 4

Disk

Figure 9-8: All input will pass from disk, through the server process, to individual processes within the
computational domain. Two SMS environment variables can be set to control the size of two data structures
within the server process: the number of input buffers (SMS_RBC) and the size of each buffer (SMS_RBS).

If not enough memory is available to store all input on a single process, SMS_RAN_RSTYLE
should be set to “one-var”. This will force SMS to read each variable into a buffer that resides on
the server process, transfer that data to the server process for distribution among the compute
processes, and then read the next variable. In this case, the quantity: SMS_RBS * (SMS_RBC-1)
should be set to the size of the largest input variable.

The techniques described above are useful for reducing execution time when performance
analysis indicates that run-time is limited by I/O time. Exact values of environment variables and
number of cache processes are best determined by experimentation.

 129

10 Program Termination

Parallel programs using the SMS run-time system require special handling to ensure all processes
exit normally. An SMS control process is often used to manage all child processes that have
been spawned through the smsRun command to execute a program. Two types of program
termination are supported by SMS: a normal exit and an abort. When a program exits normally,
the SMS control process will wait until every processes’ computations, communications and I/O
are complete before exiting. A program abort will not guarantee the completion of outstanding
operations or an orderly termination of processes.

10.1 Automatic Code Generation for Termination

By default, PPP will automatically generate code to abort whenever a Fortran “stop” statement is
encountered. PPP will also generate a normal exit whenever a program “end” statement is
encountered. Consider the following program:

 program main

 do ii=0, num_iter
 call time_steps(ii,status)
 if (status .eq. ABORT) then
 print *,’ Model Run failed at iteration: ‘,ii
 stop
 endif
 enddo

 print *,’ Model Run Successfully Completed’
 stop
 end

Example 10-1. Automatic Code Generation by PPP will cause this program to always abort.

Since the Fortran “stop” appears before the line before the end program statement, PPP will
generate code to abort the parallel run. During code translation the following warning message
will always appear when source contains a fortran stop statement:

WARNING: Program abort detected.

Since the intent of the original code in this case is to exit normally from the program, two actions
can be taken to ensure this happens in the PPP generated source. Either the second “stop”
statement (above the “end”) should be removed, or the EXIT directive should be used as
illustrated in the next section.

 130

10.2 EXIT Directive

EXIT is used to control the run-time behavior of an SMS program. This directive, when inserted
just before a “stop” statement, will instruct PPP to generate code to exit rather than abort. The
proper placement of this directive is illustrated in Example 10-2 below:

 program main

 do ii=0, num_iter
 call time_steps(ii,status)
 if (status .eq. ABORT) then
 print *,’ Model Run failed at iteration: ‘,ii
 stop
 endif
 enddo

 print *,’ Model Run Successfully Completed’
CSMS$EXIT
 stop
 end

Example 10-2. Using CSMS$EXIT to override automatic translations

In this example, a PPP warning message will automatically be generated for every stop statement
that is not immediately preceeded by the EXIT directive.

10.3 MESSAGE Directive

MESSAGE, is used to send a message to the user at run-time and optionally terminate execution
of the program when it is encountered. This directive is useful when the user wishes to avoid
unnecessary parallelization of code they believe is never executed. Three run-time actions are
available to the user of MESSAGE: ABORT, terminates execution after writing the given
message to stderr, WARN writes the given text to stderr, and INFORM writes the text to stdout.

 if (condition_ever_met) then
CSMS$MESSAGE(ABORT,'COMPS: THIS CODE HAS NOT BEEN PARALLELIZED BY SMS')
 call comps(a,b,c,d,NX,NY)
 endif

Example 10-3. Using MESSAGE to output run-time messages.

In this example, the programmer believes the subroutine comps is never executed so rather than
parallelizing it, MESSAGE is used. Since ABORT is specified, SMS will terminate the
execution of this program after the message is output to stderr.

 131

11 Building a Parallel Program

11.1 Overview

This section describes how to use the Parallel Pre-processor (PPP) to translate Fortran code into
SMS parallel source. Output files, named automatically by PPP, will be introduced in Section
11.2. Several command line options to PPP are described in Section 11.3. In Section 11.4, a
simple makefile is described which can be used to build a serial or SMS parallel code. In
addition, various relevant compiler and linker options are discussed in this section. Building
parallel source using PPP can result in both syntactic and semantic errors that must be corrected.
Section 11.5 will discuss how to interpret these PPP generated messages. Finally, Section 11.6
will describe compiler errors due to namespace conflicts from PPP generated source.

11.2 PPP Generated Output Files

Output files generated by PPP are named automatically. Include files will be named by
appending “.SMS” to the original file name (e.g. params.h becomes params.h.SMS). All
other source files will be named by appending “_sms” to the body of the original filename (e.g.
main.f becomes main_sms.f). Intermediate files are also generated during the code
translation process. These files, appended with the suffix “.tmp”, remain after PPP translation.
When errors are detected in the code during code parallelization, PPP messages will be generated
that reference these intermediate files (see Example 11-6). Any corrections should still go into
the original file from which translated code is generated by PPP.

11.3 Building SMS Parallel Source Code

The transformation of Fortran code into parallel SMS code requires the use of PPP. PPP
translations are based on both its analysis of the original code and the SMS directives that were
inserted into the code. This section describes how to use PPP to create parallel code at the
command line, defines what code generation options are available, and gives some examples.

11.3.1 PPP Command Line Options

All PPP code translations are managed through a command line script called ppp. A single file
can be processed at a time and no inter-procedural analysis is done. PPP is invoked by: ppp
[options] filename . Command line options currently available are:

--checkfirst A useful optimization to avoid PPP processing of files that do not
require translation. This option can be used to allow more flexible
use of suffix rules (see Section 11.4). If no I/O statements or
directives are found, no PPP processing is done and the following
message is output:

 132

 File has no directives - SKIPPING PPP
PROCESSING

--comment leaves replaced lines in the code as Fortran comments. This can
be useful for debugging the parallel code. Note: the string used to
comment out the original code is C-PPP.

--ExtendedSource allow valid Fortran source to extend beyond 72 characters

--Fcommon name of an optional include file that is not part of the original

source code. Typically it will contain data decomposition
directives (see Example 11-4)

 --Finclude name of an included file to be parallelized that is referenced in the
 source file being translated by PPP (see
Example 11-2)

--Fvisible file(s) to be made visible to PPP in order to correctly translate the
current file. This option is only required for a series of nested
include files (see Example 11-3)

--header indicates the type of file to be translated is a Fortran include file

--help prints the command line options

--IncludePath include file search path. Similar to -I F77/F90 compiler option

--Verbose controls the output of PPP diagnostic and code analysis messages.

Errors, Warnings and Notes are output based on the verbose value.
(see Example 11-7).

11.3.2 Examples

Example 11-1 shows how to build a parallel version of an include file:

>> ppp --header params.h

[params.h]

 parameter(nx=50, ny=50)

CSMS$DECLARE_DECOMP(decomp, <nx, ny>)

C global variable declarations …

 133

Example 11-1. Building any Fortran include file requires the --header option.

Example 11-2 shows how to use the parallel version of an include file when translating an
executable code file. Since the translation of params.h will result in an SMS parallel version of
this file (params.h.SMS), we use the --Finclude option to ensure this include file reference will be
changed in the parallel version of dynamics.f.

>> ppp --Finclude=params.h --comment dynamics.f

 [dynamics.f]

...
 program dynamics

 include ‘params.h’

c Fortran code ...

 end

...
GENERATED PARALLEL PSEUDO CODE

...
[dynamics_sms.f]

 program dynamics

C-PPP include ‘params.h’
 include ‘params.h.SMS’

c Fortran code

 end

Example 11-2: The –Finclude option is used to specify the Fortran include file params.h which is referenced
in the file (dynamics.f) being translated. This ensures the parallel (translated) include file will be referenced
in the translated output of dynamics.f.

Example 11-3 illustrates the use of the --Fvisible option. In this example, the file “variables.h”
requires information about the data decompositions listed in “params.h” to correctly translate the
declarations “a” and “b” enclosed within the DISTRIBUTE directive. In particular, the array
dimensions nx, ny and nz must be translated to process local sizes using information provided
by DECLARE_DECOMP. The --Fvisible option is used is used to make params.h “visible” to
variables.h.

>> ppp --header params.h
>> ppp --Fvisible=params.h --header variables.h

 134

>> ppp --Finclude=params.h --Finclude=variables.h main.f

[params.h]
..
 parameter(nx=50, ny=50)
CSMS$DECLARE_DECOMP(decomp, nx, ny)

C global variable declarations ...
..

[variables.h]
..
CSMS$DISTRIBUTE(decomp, nx, ny) BEGIN
 real a(nx, ny, nz)
 real b(nx, ny, nz)
CSMS$DISTRIBUTE END
..

[main.f]
..
 program main

 include ‘params.h’
 include ‘variables.h’

c other code ...

 end

Example 11-3: The --Fvisible option is used when inter-dependent include files must be translated.
In Example 11-1, the CSMS$DECLARE_DECOMP was added to an include file that already
existed (params.h). If the user prefers to insert the SMS directives into a separate “directives”
file, the option --Fcommon is used instead of --Finclude. Example 11-4 illustrates the --
Fcommon option.

>> ppp --header sms.inc
>> ppp --Fcommon=directives.inc dynamics.f

[directives.inc]
..
 parameter(nx=50, ny=50)
CSMS$DECLARE_DECOMP(decomp,<nx,ny>)
..

[dynamics.f]
...

 135

 program main

 include ‘params.h’

c more Fortran code ...

 end

...
GENERATED PARALLEL PSEUDO CODE

...
 program main

 include ‘directives.inc.SMS’
 include ‘params.h’

c more Fortran code ...

 end

Example 11-4: In this example DECLARE_DECOMP, defined in “directives.inc”, is referenced (and
required) by “dynamics.f”. Note: Since params.h no longer contains any SMS directives and will not be
translated by PPP, it CANNOT be listed using the -Finclude command line option.

11.4 Building PPP Executables

A simple makefile is presented to aid the user in translating their sequential codes into SMS
codes. This file assumes the variable “SMS” has been set to the location where the SMS
software has been installed. This can either be set explicitly in the Makefile at line 5, or defined
as an environment variable (e.g. setenv SMS pathname).

 1 # standard make file used to build serial or SMS parallel executables
 2
 3 .SUFFIXES: .s .p
 4 #
 5 SMS = /usr/local/sms
 6
 7 # system specific compilation flags (for an SGI Origin 2000)
 8 COMPILER = f77
 9 COMP_FLAGS = -O2 -64 -mips4 -r10000 -fixedform -I$(SMS)/include
10
11 # SMS link libraries
12 LIBS = -L$(SMS)/lib -lfnnt -lnnt -lsrs -lppp_support -lmpi
13
14 # PPP specific options set here
15 PPP = $(SMS)/bin/ppp
16 PPP_FLAGS = --Finclude=params.h --Finclude=variables.h --comment \
17 --checkfirst
18 PPP_HEADER_FLAGS = --header --comment

 136

19
20 # include files
21 INCLUDES = params.h variables.h globals.h
22 PINCLUDES = ${INCLUDES:.h=.H}
23
24 # object files
25 OBJS = file1.o file2.o file3.o
26
27 PFILES = ${OBJS:.o=.p}
28 SFILES = ${OBJS:.o=.s}
29
30 # executable target names
31 parallel: $(PINCLUDES) $(PFILES)
32 $(COMPILER) -o par_prog $(OBJS) $(COMP_FLAGS) $(LIBS)
33
34 serial: $(INCLUDES) $(SFILES)
35 $(COMPILER) -o seq_prog $(OBJS) $(COMP_FLAGS) $(LIBS)
36
37 # suffix rules for sequential and parallel source
38 .f.s: $(INCLUDES)
39 $(COMPILER) -c $(COMP_FLAGS) $<
40
41 .f.p: $(PINCLUDES)
42 $(PPP) $(PPP_FLAGS) $*.p
43 $(COMPILER) -c $(COMP_FLAGS) $*_sms.f
44 mv $*_sms.o $*.o
45
46 # include file translations
47 params.H: params.h
48 $(PPP) $(PPP_HEADER_FLAGS) params.h
49
50 variables.H: variables.h params.h
51 $(PPP) $(PPP_HEADER_FLAGS) --Fvisible=params.h variables.h
52
53 globals.H:
54
55 clean:
56 /bin/rm *_sms.f *.SMS *.o *.tmp

Example 11-5. A makefile for serial or parallel source.

11.4.1 Makefile Compiler and Linker Options

The Fortran compiler flags (COMP_FLAGS on line 9) are set for an SGI Origin 2000. Other
systems will require different options. A makefile provided in the SMS distribution
($SMS/lib/makefile.header) gives recommended compilation flags (found in variable
STD_OPT_FLAGS) that should be used when modifying COMP_FLAGS for the target machine.

11.4.2 Include File Handling

Include files are listed for both parallel and sequential source in the makefile variable
INCLUDES. Parallel include files (line 22) are translated using SMS are built using the explicit

 137

targets params.H and variables.H (lines 47-51). Notice the PPP command to build variables.h
(line 51) contains the --Fvisible option in addition to the standard ppp flags defined by:
PPP_HEADER_FLAGS at line 18. Since variables.h requires information from params.h for
proper translation, this option is required (see Example 11-3).

PPP_FLAGS (lines 16-17) lists the include files that are translated by PPP via the –Finclude
option. This option is required to ensure any references to these files in Fortran source will be
modified to their parallel filename (see
Example 11-2).

11.4.3 Building the Object Files

Two suffix rules are used to build sequential or parallel object source. Sequential source files are
built using the first (.f.s) suffix rule (line 38) while parallel source rely on the second (.f.p) suffix
rule (line 41). This makefile uses .s for serial and .p for parallel but any suffix name could have
been used. Using these rules to build an SMS parallel object file from the file file1.f, for
example, the user would enter:

>> make file1.p

PPP generated source is written to the file: file1_sms.f, and the object file: file1.o would
be built unless compilation errors occurred.

Similarly, to build a serial object file, the user would enter:

>> make file1.s

11.4.4 Building the Executable

In addition to building single object files, this makefile can also build a parallel or serial
executable from a set of object files. Using a pre-defined list of object file names (OBJS on line
25)), parallel (PFILES at line 27) and serial (SFILES at line 28) files are determined and listed as
dependencies for each target executable. This assumes there is a direct mapping between the
object and source file names (e.g. file1.o maps to file1.f; not something else).

Then to build the SMS parallel executable “par_prog” in this makefile, the user would enter:

>> make parallel

Similarly, the user would enter the following to build a serial executable called seq_prog:

>> make serial

 138

11.5 PPP Error Reporting

Two types of errors are reported by PPP: parsing errors and semantic errors. Parsing errors must
be corrected before further translations of the input file are permitted. Semantic errors are
reported as errors, warnings or notes. These messages can be controlled through the --verbose
option of PPP discussed in Section 11.5.2.

11.5.1 Parsing Errors

Parsing errors occur when PPP cannot resolve the Fortran code to the grammar defined by the
SMS/PPP directives (refer to the SMS Reference Manual), and the Fortran 77 language. Further
details about language extensions supported by SMS can be found at:

http://www-ad.fsl.noaa.gov/ac/SMS_Supported_Fortran_Features.html

The parser currently supports statements or PPP directives that are up to 500 characters in length.
Multiple statement lines are collapsed and white space is removed before statements are parsed.
Statements longer than 500 characters will not be parsed correctly in PPP.

The form of a parsing error message is:

<filename> <line> <column> <error type> <message>

filename - name of file being parsed
line - line number
column - column number in which error occurred
error type - types are:
 ERROR, WARNING, NOTE
message - diagnostic message

An example of a PPP generated parsing error is shown in Example 11-6.

 1 CSMS$DECLARE_DECOMP(spec_dh,<jtrun>)
 2 CSMS$DISTRIBUTE(spec_dh, jtrun) BEGIN
 3 real*8 cc(jtrun), bb(jtrun)
 4 CSMS$DISTRIBUTE END
 5
 6 CSMS$PARALLEL(spec_dh, m) BEGIN
 7 do 3 m=2, jtrun, 2
 8 cc(m) = cc(m) + bb(m)
 9 continue
10
11 C CSMS$PARALLEL END is missing
12
13 end

 139

Example 11-6. Code that generates a PPP parsing error.

PPP generates the following error message:

“Loops_sms.f.tmp" 13 501 ERROR: Syntax error
“Loops_sms.f.tmp" 13 501 NOTE Parsing resumed here

This message indicates the parser failed in the file Loops_sms.f.tmp at line 13 column 501.
A parsing error occurring at column 501 indicates no resolution of the statement to the grammar
by the end of the line. In the example, the parser expects a PARALLEL END directive before
the end of the file. Naturally, the error should be corrected in the original file (Loops.f) rather
than the PPP generated file.

11.5.2 Semantic Errors

Semantic errors are reported when a section of code targeted for translation has an error (a PPP
ERROR), may cause incorrect code to be generated (a PPP WARNING), or identifies a place
where a particular type of transformation occurred or PPP language limitation was detected (a
PPP NOTE). By default, all PPP ERROR messages will be output. Control of semantic errors
are handled through the PPP command line option: --verbose = <value>. Four verbose options
are permitted:

value message domain

 0 no semantic messages are output (not recommended)
 1 PPP ERRORS only (DEFAULT)
 2 PPP ERRORS and WARNINGS only
 3 PPP ERRORS, WARNINGS and NOTES

While the error messages should always be addressed, warning messages may also be useful for
detecting potential problems. For example, the code segment in Example 11-7 below causes PPP
to generate the following important warning message:

./IO.f.tmp” 11 13 WARNING: This variable, decomposed by CSMS$DISTRIBUTE, is
being used outside of a parallel region.

This warning message indicates a problem on line 11, column 13 of the PPP generated file
IO.f.tmp. The variable cc was defined to be a distributed array (using DISTRIBUTE) but is
being referenced outside a parallel region (PARALLEL). Further explanation on the use of these
directives can be found in Section 2.3.

>> ppp --verbose=2 IO.p

 140

 1 CSMS$DISTRIBUTE(dh, m, n) BEGIN
 2 real cc(m,n)
 3 CSMS$DISTRIBUTE END

 4 do i = 1, m
 5 do j = 1, n
 6 cc(i,j) = 0.0
 7 enddo
 8 enddo
 9
10 c more code ...

Example 11-7. Code that generates a WARNING because the decomposed variable “cc” is being used outside
of a parallel region.

11.6 Compilation Errors

During the parallelization process PPP generates new variables for some translations. PPP
variables are either automatically generated or defined explicitly by PPP. Explicitly defined
names will always contain a double underscore in their name (e.g. ppp__status). To avoid
compiler errors due to name space conflicts, avoid using variable names with double underscores
in them. For example, the sequential code cannot contain a variable called PPP__status
because PPP translation explicitly defines another variable called ppp__status for its own
use. A compilation error would result because two variables would be declared with the same
name.

 141

12 Running a SMS Program

12.1 Introduction

Once a program has been translated into SMS parallel code (Section 11.3) and linked to the
appropriate libraries (see Section 11.4), it can be run on one or more processors using the SMS
run-time executable smsRun. The syntax for smsRun is:

>> smsRun numprocs execname [options]

By default, SMS uses an additional server process to perform I/O operations, and provide overall
management and control services for the other processes. For example, to run the executable test
with two processes and one server process, the user would enter:

>> smsRun 2 test

It is possible to take advantage of the idle compute cycles available on the server process by
setting SMS environment variable SMS_SERVER_MODE to serverless. This will permit
computational and management functions to co-exist in a single process. This option is
beneficial when only a small number of processors are available. However, as the numbers of
processes grow, the cost of performing both server functions and computations will limit the
performance of the other dependent processes.

Figure 9-5 assumes a single process is run on each processor. However, SMS permits the user to
request more processes (using smsRun) than available processors. For example if my_program
was run with 20 processes:

>> smsRun 20 my_program

on a system with only 16 processors, five processors would contain two processes, one would
contain the server process, and the rest would each contain a single process designated to run the
program. This is a bad idea because performance will suffer whenever multiple processes are
scheduled on a single processor on most machines.

12.2 Optional Command Line Arguments

Several optional arguments to smsRun are permitted. One optional argument to control the
number of I/O write-cache processes to be dedicated to the program’s execution can be expressed
by:

>> smsRun numprocs execname -smswc numcacheprocs

The use of write-cache processes to improve performance is discussed in Section 9.4.5. Another
option, -sms-, allows the user to specify machine specific arguments to the underlying

 142

communication layer (e.g. MPI, SHMEM) directly. All arguments that follow this option will be
ignored by SMS and passed directly to the communications software. For example:

>> smsRun 3 test -sms- -mpi_special

illustrates a way to pass the run-time option -mpi_special to the underlying MPI executable
(mpirun) to specify node names on a network of work stations. Information about other machine
specific optins for smsRun are available at the following SMS web site:

http://www-ad.fsl.noaa.gov/ac/SMS_Run_Options.html

12.3 Run-time Environment Variables

Several environment variables can also be set to control the run-time behavior of SMS. The
following environment variables are available:

SMS_BITWISE Set to “EXACT” to use bit-wise exact reductions - see Section 7.2
SMS_CHECK_HALO Set to “ON” to execute checks of halo regions specified by

CHECK_HALO directives.
SMS_CLOSE_MODE
SMS_IO_FORMAT Used to specify file format for files that are read or written by SMS

(see Section 9.1).

SMS_IOC_SIZE Improving Output Performance (see page 125)
SMS_PUTS_MODE Modifies the default behavior of formatted output. Options are:

ROOT, ASYNC and ORDERED. See Section 9.3 for more details
about these options.

SMS_RAN_RSTYLE Improving Input Performance (see page 127)
SMS_RBC Improving Input Performance (see page 127)
SMS_RBS Improving Input Performance (see page 127)
SMS_READ_FORMAT Used to specify file format for files that are read by SMS (see

Section 9.1).

SMS_SERVER_MODE The SMS Server Process (see page 122)
SMS_TIMER_LEVEL
SMS_WBS See Section 9.4.5 - page 125
SMS_WRITE_FORMAT Used to specify file format for files that are written by SMS (see

Section 9.1).
SMS_XFERMODE Controls transfer algorithms that are used to implement

TRANSFER. Options are: “logn” and “original”

 143

12.4 Run-time Error Messages

When an error occurs in an SMS program, execution will usually terminate and SMS will
generate an informational message describing the source file name, line number, and a brief
summary of the problem. A complete set of SMS run-time error messages is available at the
following SMS web site:

http://www-ad.fsl.noaa.gov/ac/SMS_Messages.html

Example 12-1 illustrates SMS run-time message capabilities. Recall that the user is responsible
for determining the correct number of processes over which to run the program. For static
memory allocated programs, the minimum number of processes will be determined by declared
local size values in DECLARE_DECOMP as discussed in Section 3.3.

 1 program example1
 2
 3 parameter(nx=50, ny=50)
 4 parameter(nx_a=nx/2, ny_a=ny/2)
 5 CSMS$DECLARE_DECOMP(decomp, <nx_a, ny_a>)
 6 CSMS$DISTRIBUTE(decomp, nx,ny) BEGIN
 7 real a(nx,ny)
 8 CSMS$DISTRIBUTE END
 9
10 CSMS$CREATE_DECOMP(decomp,<nx,ny>,<0,0>)

>> smsRun 1 example1

 Process: 0 Error at: ./example_sms.f.tmp:17.1
 Process: 0 Error status = -2202 MSG: DECOMPOSED ARRAYS ARE TOO SMALL.
 Process: 0 Aborting...

Example 12-1. Code and command that generates a run-time SMS error.

After PPP translation, the array a will be defined with the declared local sizes nx_a and ny_a
given in DECLARE_DECOMP. Since the local sizes of this array are half the size of the original
code (nx and ny respectively), the minimum number of processes the user can run this problem is
four (two in each direction). If you attempt to run on fewer processes, the program will halt with
the given error message.

The first line of the error message indicates the file name and location within the file where the
problem occurred. PPP generated code frequently uses sub-numbering due to multiple generated
calls to SMS routines that stem from the same line of original code. In this example, a run-time
error was detected by SMS at line 17 in code generated by the directive CREATE_DECOMP that
can be found in temporary file: example1_sms.f.tmp (not shown).

 144

The second line gives the SMS error message. The error messages reflects the incorrect sizing of
the decomposition decomp, declared by DECLARE_DECOMP and initialized by
CREATE_DECOMP.

Once the problem is understood corrections to the code can be made. These corrections should
go into the original file (in this case example1.f) not in the temporary file where the problem was
detected and probably diagnosed. Once changes are made, ppp can be executed to re-translate
the input file from which a fresh executable can be built and tested.

Appendix A: Assignment of Processes to Decomposed Dimensions

The assignment of processes to decomposed dimensions by SMS depends on the number
of processes and the global sizes of the decomposed dimensions. Below are the rules that
SMS follows when deciding how to allocate processes among one or two decomposed
dimensions. Assume that Np = number of processes and Nd = number of decomposed
dimensions:

 1) If Nd=1, assign all processes to the single decomposed dimension.

 2) If Np is prime, assign all processes to the decomposed dimension with the largest
size.

 3) If Np is not prime and Nd=2, factor Np into f1*f2 = Np, such that factors f1 and f2
are as close together as possible.

 3a) If factors are equal (f1=f2), assign f1 processes to each decomposed dimension.

 3b) If factors are not equal, assign a number of processes equal to the largest factor to
the decomposed dimension with the largest size.

 3c) If factors are not equal and sizes of decomposed dimensions are equal, assign a
number of processes equal to the largest factor to the last decomposed dimension.

These rules are intended to allow for optimum performance with minimal input from the
user. Rule 1 handles the simple cases where more than one decomposed dimension has
been specified but only one can actually be decomposed because the number of processes
available is prime. Assignment of all processes to the largest decomposed dimension will
usually result in the most efficient distribution of work. Rule 3 restricts factoring of Np
to keep the number of processes assigned to each dimension as close together as possible.
For example, with Nd=2, 100 processes would be factored into 10*10, not 20*5 or 25*4.
The effect of this rule is to keep the virtual process array as "square" as possible which
can be beneficial for "exchange" type communications on some machines. Rule 3b will

145

cause more processes to be assigned to larger dimensions in cases where factors are not
equal. This was the case in the 8-process run where im was greater than jm in the
examples above. The purpose of this rule is to allow SMS to attempt to "fit" the virtual
process array to the Fortran arrays as closely as possible. Rule 3c causes SMS to assign
more processes to the last decomposed dimension to allow the user to control whether
more processes will be assigned to the outer or inner array dimensions.

To further illustrate rule 3c, consider the following code fragments:

[Fragment 1.]
CSMS$CREATE_DECOMP(DECOMP_1, <nx, ny>, <0,0>)
...
CSMS$DISTRIBUTE(DECOMP_1, <nx>, <ny>) BEGIN
 real u(nx,ny)
CSMS$DISTRIBUTE END

[Fragment 2.]
CSMS$CREATE_DECOMP(DECOMP_2, <jm, im>, <0,0>)
...
CSMS$DISTRIBUTE(DECOMP_2, <im>, <jm>) BEGIN
 real a(im,jm)
CSMS$DISTRIBUTE END

In fragment 1, when nx.EQ.ny, more processes will be assigned to the second
decomposed dimension, ny, which is the outer dimension of array u. This will preserve
the longest possible vector lengths because the inner dimension of u (nx) will not be split
up among the processes. This approach is good for a machine with vector processes. In
fragment 2, when im.EQ.jm, more processes will be assigned to the second
decomposed dimension, im, which is the inner dimension of array a. In some special
cases, this may result in better performance on some cache-based machines. In general,
the user can simply keep the decomposed dimensions in the same order as the array
dimensions and expect the best performance in most cases on most machines.

146

A

adjacent dependence · 27
Aggregating · 79
ASYNC · 17, 111

B

bandwidth · 5
Bit-wise Exact · 94
broadcast · 107

C

cache · 36
CHECK_HALO · 88
CREATE_DECOMP · 12

D

DECLARE_DECOMP · 12
decomposition · 10
dependence analysis · 5
dimension tag · 50
DISTRIBUTE · 12
Distributed Memory · 5
dynamic memory allocation · 10

E

embarrassingly parallel · 60
EXCHANGE · 32, 47, 66

F

FDA · 5
finite difference approximation · 5

G

gather · 90, 97, 104
global array · 12

global dependence · 18
global indices · 12
global sizes · 12, 42, 54, 67, 138
GLOBAL_INDEX · 14, 64

H

halo regions · 14, 29, 38, 76
HALO_COMP · 14, 81

I

IGNORE · 99
Index Scrambling · 46
INSERT · 99
interior · 67, 68

L

latency · 5
lbound · 62
Load Balancing · 46
local array · 12
local indices · 12, 14, 56, 58, 60
local sizes · 12
Lower Bounds · 52

M

MPI · 8

N

namelist · 111
native · 104, 108
numbers · 6, 19, 45, 56, 59, 94, 96
Numerical Weather Prediction · 5
NWP · 5

O

ORDERED · 17, 111

147

P

PARALLEL · 12
periodic · 32
PPP · 8
PRINT_MODE · 17, 112
process · 6

R

recurrence relation · 33
REDUCE · 13
redundant computations · 81
REMOVE · 99
ROOT · 111

S

scatter · 104
scope · 13
SERIAL · 56, 92, 99
serverless · 114, 117, 135
shared memory · 5
size · 61

SMS_IO_FORMAT · 108
SMS_READ_FORMAT · 108
SMS_WRITE_FORMAT · 108
smsRun · 8
spectral transform method · 5
SPMD · 5
Standard Reductions · 94
static memory allocation · 38
stencil · 27

T

TO_GLOBAL · 14
TO_LOCAL · 14, 57
TRANSFER · 13

U

ubound · 61

V

vector · 36

